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Being able to predict an earthquake in advance ensures that 

meaningful steps are taken to mitigate a disaster and manage 

its impacts on human life and infrastructure. The aim of this 

research is to utilize machine learning algorithms to fully 

automate the detection of early signs of a potential earthquake 

using real-time streaming data for seismic analysis. The study 

compares the performance of modern deep learning techniques 

(LSTM, CNN) with that of older, more established statistical 

techniques like Logistic regression, KNN, and Decision trees 

for the prediction of seismic activities. Unlike the traditional 

method which relies only on primary wave signals as the sole 

input, it integrates associated earthquake metadata to enhance 

forecast precision and expedite alarm issuance. Also included 

in this work is an automated alert system that has the capability 

to autonomously and instantly generate messages and dispatch 

them through a specified communication port, thereby 

guaranteeing that sensitive populations are alerted in a timely 

and effective manner. The experiments illustrate that machine 

learning techniques are capable of accurately detecting the 

signatures of seismic activity and providing prompt reliable 

warnings. This research also highlights the importance of 

integrating artificial intelligence-based prediction models to 

disaster management systems to improve the level of response 

to emergencies. The emerging data-driven systems for issuing 

early warning alerts can enhance earthquake prediction and 

disaster management, thus improving the current position of 

technology. This research proves its feasibility. 

 

 

 

1. Introduction 
Earthquakes are one of the most destructive natural disasters, causing huge damage, many 
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deaths and severe economic impacts. Early warning systems (EWS), which can signal the 

onset of harmful seismic activity before it starts, are essential to reduce these impacts. To 

warn of the arrival of more destructive secondary waves (S- waves), traditional EWSs have 

relied primarily on detecting seismic waves, particularly primary waves (P- waves)[1]. 

However, these methods are limited by the speed of detection, the availability of seismic 

infrastructure, and the inability to forecast earthquakes over longer periods[2]. Furthermore, 

not all regions have the expertise and large sensor networks required for current early 

warning systems, particularly in low-income countries with limited resources for seismic 

monitoring[3]. With the advancement of machine learning, predictive modelling has 

emerged as a new technique to improve earthquake forecasting[2]. Long Short-Term 

Memory (LSTM) networks and other deep learning techniques have shown potential in 

analyzing seismic waveforms to detect pre- earthquake patterns[4]. These models help to 

derive complex patterns from unprocessed waveforms because they can identify long-term 

dependencies in continuous seismic data[5]. 

Although LSTM models have been shown to have strong predictive capabilities, their 

feasibility in real time applications is limited by their high interpretation requirements, long 

training cycles, and dependence on large amounts of sequence data[6]. In addition, the 

adoption of such models in the real world becomes even more difficult due to the need for 

large labelled datasets and continuous retraining, especially in regions where access to 

advanced computing devices is difficult[7]. In contrast to LSTM, this study explores the 

possibility of metadata- driven machine learning techniques (especially logistic regression) 

for earthquake prediction. Unlike deep learning algorithms that process raw seismic 

waveforms, logistic regression uses organized seismic metadata that contains factors such as 

magnitude, depth, location and historical seismic trends[10]. By focusing on statistically 

relevant seismic metrics rather than complex time-series processing, metadata-based 

techniques have the potential to speed up predictions and reduce resource consumption[11]. 

The approach aims to provide a deployable and computationally efficient solution for real-

time earthquake prediction by utilizing metadata rather than waveform analysis[10]. To 

determine the best machine learning strategy, this study evaluated the K-Nearest Neighbors 

(KNN) decision tree and CNN models, as well as logistic regression[12]. The best-

performing models were incorporated into a FastAPI-based system that uses the Meta Cloud 

API to distribute real-time earthquake alerts via WhatsApp[16]. This ensures that alerts are 

fast and accessible, and reach affected populations quickly through increasingly ubiquitous 

communication channels, thus improving disaster preparedness and response strategies[17]. 

The main objective of this study is to determine whether LSTM models trained on seismic 

waveforms perform better than Logistic regression trained on seismic metadata[5].It also 

examines the computational efficiency, recall, accuracy, and precision of earthquake 

prediction models such as decision trees, KNNs, and logistic regression[13]. 

Along with implementing FastAPI and WhatsApp, the most effective machine learning 

models will also be incorporated to formulate an advanced real-time seismic alarming 

system[16].This study aims to determine if machine learning models driven by metadata 

could effectively replace the need for real-time notification systems for earthquakes by 

minimizing the need for crucial waveform data and computational resources[11].This 

research will determine if metadata-driven models can accurately predict earthquakes by 

using various models and evaluating their performance against and for providing effective 

and accurate prediction. The central assumption of the study is that logistic regression 

achieves a comparable to equal level of predictions in comparison to LSTM models, but does 

so more efficiently when using structured seismic metadata prompting more suited 

computations for real-time applications[10].In computationally weak but seismically active 

regions, important metadata patterns can rapidly be extracted through logistic regression 

while LSTM models are burdened with constant waveform scrutiny along with 
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comprehensive preprocessing[7]. This study aims to enhance the realm of disaster 

management by creating an accurate, efficient, and lightweight real-time earthquake 

prediction model based on metadata-driven predictive modeling[11]. The outcomes of this 

study can help in optimizing some mechanisms of disaster preparedness, improving public 

safety, and strengthening the existing early-warning systems[3]. 

 

2. Literature Review 
Machine learning has transformed earthquake prediction by enabling researchers to discover 

complex patterns from large-scale seismic datasets[2]. Statistical techniques and geophysical 

metrics (e.g., fault line stress accumulation, historical seismicity, and tectonic plate motion) 

have long been the backbone of traditional earthquake prediction models[4].However, these 

traditional methods tend to be poorly generalized and inaccurate and are unable to adapt to 

the ever-changing seismic situation[5].To improve real-time prediction capabilities and 

forecast accuracy, researchers have adopted sophisticated machine-learning methods. Deep 

learning methods, particularly Long Short-Term Memory (LSTM) networks, are among the 

most widely studied machine learning models for earthquake prediction. LSTM has proven 

to be very successful in identifying long-term relationships in continuous seismic data by 

analyzing seismic waveform patterns over time[7].These networks are ideal for time-series-

based earthquake forecasting because they can store data from previous occurrences. It has 

been shown that LSTM models can successfully detect earthquake precursors by analyzing 

P-wave signals, tremor activity and other seismic changes[8].However, despite its great 

potential, LSTM has significant drawbacks. Since LSTM relies on a large amount of 

annotated seismic waveform data, it requires a large dataset, powerful computational 

capabilities, and a long training cycle, resulting in high computational costs[6].In addition, 

when trained on small datasets, LSTM is prone to overfitting, which limits its ability to make 

inferential predictions for earthquakes that have not yet occurred[7].These difficulties limit 

the application of LSTM models in real-time earthquake early warning systems (EEWS), 

especially when processing infrastructure and resources are limited[6]. 

To deal with these issues, researchers have been looking for other methods of machine 

learning that might enhance real-time functionality and minimize costs simultaneously. 

Logistic regression (LR) is a statistical method of classification that operates on structured 

data instead of raw data such as seismic waveforms[10].So, it is convenient to use logistic 

regression in the prediction of earthquakes because of its great simplicity, ability to be 

interpreted, and computational effectiveness[11].Even though deep learning approaches 

require a long and detailed treatment of time-series data, earthquake size, depth, location, 

historical seismic activity, and regional tectonic information are all used in constructing the 

seismic contours in logistic regression[10].Since LR focuses on these structured features, it 

is very accurate and does not require sophisticated pre-processing. 

 

Also, this study allows for the further examination of the new hybrid strategy incorporating 

constrained seismic waveform analysis and metadata-based prediction that can potentially 

improve the overall effectiveness and precision of forecasting systems, which is the goal of 

this research[3].This approach was designed to help solve the shortcomings of current 

earthquake prediction methods and vastly mitigate the impact of seismic hazards 

globally[1].This metadata methodology not only enables effortless real-time predictions, but 

greatly enhances the practicality of widespread implementation[3]. 

Though logistic regression is (LR) a lightweight predictive model, there is a need to 

investigate other techniques of machine learning ranging from convolutional neural 

networks (CNN), K-nearest neighbors (KNN), decision trees, and others[5]. Despite the fact 

that convolutional neural networks are mostly applied to tasks of object recognition and 
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some lower- level spatial features, they have been intimidated to analyze seismic data. CNNs 

utilize geographic patterns and the relationships among earthquakes to process seismic data. 

CNNs can recognize patterns in space but are not as efficient as traditional metadata-based 

models for real-time applications because of the excessive amount of training data and 

computational power needed[8].On the other side of the KNN spectrum, a non- parametric 

algorithm that classifies objects by considering their neighbors, KNN provides an intuitive 

classification framework for predicting earthquakes by analyzing seismic data and finding 

similar antecedent seismic activities[10].Whereas KNN provides an intuitive framework, it 

has the downside of having to keep track of and compare each sample to provide a resultant 

class for a given sample, which becomes quite costly in terms of computation time for larger 

datasets, thereby decreasing responsiveness and scalability rendering it useless in real-time 

prediction systems. In contrast, Decision trees are fast and easy to understand, and also 

effective in capturing non-linear patterns in seismic data. They are, however, extremely 

prone to overfitting particularly when trained on small or very noisy datasets[10].Due to the 

presence of overfitting, the adaptability of predictions is lowered and in real-world seismic 

environments, the prediction performance variation is negated[12]. 

Notwithstanding the existing models presented above, metadata-driven techniques emerged 

as the most feasible brute force method to apply deep learning in seismic forecasting due to 

the tremendous deficits of each of the presented models[3].Metadata based deep learning 

models were less efficient waveform based models in terms of time and resource 

consumption in reading, training, and computing[2].This work combines CNN with KNN, 

decision trees, and logistic regression to determine what combination yields the highest 

accuracy, efficiency, and performance under stringent time constraints[10].Furthermore, we 

take a step further on model performance evaluation by integrating the best model into a 

real-time earthquake alert system. The implemented model is capable of notifying users 

through WhatsApp (Meta Cloud API) and FastAPI of any seismic activity in real-time. This 

was done in order to use technology in minimizing the gap between prepared and actual 

emergency response, which can enhance disaster readiness, especially during critical 

situations[16]. 

This work seeks to aid in the production of scalable, functional and deployable earthquake 

prediction systems through systematic assessment of deep learning and metadata-based 

machine learning models. The results of this project will lay the groundwork for new 

approaches to predictive analytics within the field of earthquake forecasting and lightweight 

machine learning models can be efficiently used for real-time disaster response[4]. 

 

3. Problem Statement 
Earthquakes wait individual of the most trenchant unaffected disasters, generating huge 

death, infrastructure damage, and financial disruptions [1]. Early warning orders (EWS) play 

a crucial duty in diminishing these impacts by providing up-to-date alerts before major 

tectonic occurrences occur [3]. Traditional upheaval forecast models rely laboriously on 

basaltic waveform study, with deep knowledge approaches to a degree Long Short-Term 

Memory (LSTM) networks being widely used to recognize patterns in constant tectonic data 

[6]. While LSTM models have displayed powerful predictive facilities, their proficient 

arrangement in real-opportunity schemes faces several challenges [7]. These contain extreme 

computational complicatedness, long training phases, reliance on large marked datasets, and 

the necessity for leading processing foundation [8]. As a result, their practicability is 

significantly restricted, specifically in earthquake-likely domains accompanying scarce 

computational possessions [6]. 

Given these disadvantages, this research investigates whether metadata-compelled machine 

intelligence models, specifically logistic regression, can present image of a reasonable 
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alternative to LSTM-based tectonic predicting [10]. Unlike LSTM, that requires far-reaching 

waveform study, logistic regression and different metadata-located models influence 

structured tectonic attributes in the way that magnitude, wisdom, area, and ancient seismic 

flows to think earthquakes [11]. These models offer benefits in agreements of computational 

efficiency, ease of arrangement, and diminished confidence on large-scale basaltic 

waveform datasets [10]. However, their predicting accuracy and dependability distinguished 

to deep knowledge methods wait changeable [5]. 

This study aims to address two key research questions: 

(1) Can logistic regression utilizing basaltic metadata obtain predictive conduct 

corresponding to or superior to LSTM models prepared on inexperienced basaltic 

waveforms? [10] 

(2) How accurately can miscellaneous machine intelligence models—including decision 

seedlings, K-Nearest Neighbors (KNN), and convolutional affecting animate nerve organs 

networks (CNN)—call earthquakes, and what determinants influence their depiction? [6] 

To answer these questions, the research evaluates and compares multiple machine 

intelligence approaches established their precision, recall, veracity, and computational 

adeptness [13]. The most active model is then joined into a certain-time temblor alert 

arrangement utilizing FastAPI and WhatsApp (via the Meta Cloud API) to give breakneck 

notifications to at-risk communities [16]. By investigating the practicability of metadata-

driven machine intelligence models for basaltic prediction, this study aims to specify a 

climbable and adept alternative to waveform-dependent orders, embellishing disaster 

readiness and reaction in capability-limited domains [3]. 

 

4. Methodology 

 

4.1 Dataset Used  

The dataset employed in this research was accessed from the United States Geological 

Survey (USGS) earthquake catalogue. The dataset hold historical records of earthquakes 

with different seismic event attributes [2].The main attributes are: 

• Magnitude (mag): The magnitude of the earthquake event. 

• Depth (km): The depth of the event occurrence. 

• Latitude and Longitude: The geographic location of the event. 

• Time: Timestamp of the event occurrence. 

• Tectonic Plate Data: The area where the earthquake happened. 

• Regional Seismicity: Historical occurrences of earthquakes in the area. 

The dataset offers a complete foundation for training machine learning models through the 

combination of seismic data with metadata to achieve high prediction accuracy [4].  

4.2 Data Pre-Processing  

Before using machine learning models, the dataset was cleaned to ensure quality and 

accuracy. To improve the effectiveness of algorithms, the data set needed cleansing. The 

procedures that were carried out include:  

• Replacing Missing Values: Unattended missing data points could have a negative 

impact on the model. The following methods were utilized: 

o Missing Value for Numerical Features: For features such as depth and 

magnitude, missing values were replaced by median imputation. 
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o Missing Value for Categorical Features: Categorical missing values were 

substituted with the mode [5]. 

• Detection and Removal of Outliers: Model learning can be disturbed by outlier 

values. The Interquartile Range (IQR) method was applied, which extracts the first 

quantile of the value range to the last quantile of the value range [8]: 

IQR=Q3-Q1                                     Lower Bound= Q1-1.5xIQR                               

Upper Bound=Q3+1.5xIQR 

                                                  Equation 1 

Values outside this range were considered outliers and removed. 

• Normalization and Scaling: To ensure each feature contributes equally, 

Standardization was applied with[6]: 

𝑍 =  𝑋 −
𝜇

𝜎
 

                                                  Equation 2 

4.3 Feature Engineering Enhancements 

Feature engineering is essential to derive valuable information from crude seismic data and 

metadata. The objective of feature engineering for the case of earthquake prediction is to 

create features that represent both the physically measurable components of seismic events 

and historical data. 

 

Fig.1. Flowchart 

1. Seismic Energy Estimation 

With the use of the Gutenberg-Richter Law, the data is supplemented with an 

energy-based estimation of every earthquake’s value [7]. 

2. Tectonic Plate Dynamics 

Instead of treating tectonic plate information as categorical features, it is converted 

into numerical features via one-hot encoding and geological stress measurement 

[3]. Another feature is the distance of an event to the plate boundaries. 

3. SpatioTemporal Clustering 

DBSCAN algorithm is used to discover high-density seismically active areas. 

These clusters are used as another input for classification models to distinguish 
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between active and stable seismic zones [10]. 

4. Recurrence Intervals & Historical Activity 

Through the study of past earthquake events in an area, a feature for average 

recurrence time is added [9]. This enables models to model periodic seismic 

activity in active fault zones. 

5. Waveform-Derived Features (for Deep Learning Models) 

Seismic waveforms can be converted into spectrograms or input into CNNs to derive 

frequency-based seismic signatures, which are helpful in identifying foreshocks from 

main shocks [13]. 

4.4 Model Selection & Training 

Logistic Regression 

Logistic regression gives a probability estimate of the earthquake based on the seismic data 

history [2]. Logistic regression assigns weights to all the features (temporal patterns, local 

seismicity, depth, and magnitude) to model their influence on the probability of the 

earthquake [5]. The model outputs a probability score, which a threshold (for example, 0.5) 

will determine whether there is an earthquake that will, or will not, happen [7]. The 

timestamps allow the model to recognize periodic seismic patterns, for example, seasonal 

and aftershock sequences [14]. Logistic regression assigns weights to these features and 

uses the sigmoid function to output a probability score [8]:  

σ(z) =
1

1
+  e{−z} 

                                          Equation 3 

where P(Y=1)P(Y=1)P(Y=1) is the chance or probability of experiencing an earthquake 

and the β values are required because they measure the degree to which each of the 

features contributes to the output [10]. The model considers several time-related features, 

including seasonal variations and aftershock sequences, to differentiate and determine 

probabilistic patterns with regard to the occurrences of earthquakes [16]. 

Decision Tree Classifier 

Decision trees work by repeatedly and systematically splitting the data into subsets of 

diminishing size based on particular attributes, though not limited to, magnitude and depth 

[4]. Enhancing the process of recursive division is the aim of the ensuing information gain 

at each step [6]. As the model is processing data, it finds and creates a hierarchical set of 

decision rules that is encapsulated by the condition, "If magnitude is greater than X and 

depth is less than Y, then there is a possibility an earthquake will occur" [13]. Essentially, a 

decision tree classifies instances of earthquakes by continually making recursive divisions 

of data, which depend on attributes of magnitude and depth [11]. Each such division is 

optimized to produce the maximum amount of information gain, which is measured 

through the notion of entropy [9]: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑𝑝(𝑖)𝑙𝑜𝑔{2}𝑝(𝑖) 

                                          Equation 4 

where p(i) is the probability that a point is of a given class [7]. The model produces a tree 

where each node is a decision based on attributes (e.g., "If magnitude > 5.0 and depth < 10 

km, then classify as earthquake") [3]. Time-related attributes enable the tree to distinguish 

between single earthquakes and sequences (foreshocks, aftershocks) [15]. 

K-Nearest Neighbors (KNN) 

KNN allocates a new seismic event according to its proximity to past earthquake records 
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[2]. It calculates the straight-line distance between feature vectors (time, depth, location, 

and magnitude) to determine the K nearest past events and allocates the most frequent label 

[10]. The time axis allows KNN to identify patterns of events happening before a major 

earthquake and thus is effective in aftershock prediction [5]. But it needs a proper dataset 

to predict accurately based on proximity [3]. The model calculates the straight-line distance 

between the event feature vector x and past earthquakes: 

𝑑 =  √{(𝑥2 −  𝑥1)2 +  (𝑦2 −  𝑦1)2} 

                                          Equation 5 

where x and y are feature vectors representing earthquake characteristics [7]. The model 

identifies K closest events and assigns the most frequent class [9]. Since earthquakes often 

occur in clusters, temporal features help KNN recognize patterns in seismic sequences 

[11]. 

Convolutional Neural Networks (CNN) 

CNN is especially helpful if there is available seismic waveform data [2]. It learns spatial 

patterns from seismographic signals, extracting localized features like wave frequency, 

amplitude, and spectral properties that portend an impending earthquake [4]. CNNs are 

able to identify patterns related to various tectonic activities, allowing for high-resolution 

interpretation of seismic signals [9]. 

A convolutional layer uses filters to identify wave frequency and amplitude changes: 

Zᵢⱼ = ΣₘΣₙ X₍ᵢ₊ₘ₎₍ⱼ₊ₙ₎ ⋅ Wₘₙ 

                                          Equation 6 

where X represents the input seismic waveform, W is the filter matrix, and Zij is the 

feature map output [6]. By detecting unique signal signatures associated with different 

tectonic activities, CNN helps in recognizing micro-seismic precursors to larger 

earthquakes [14]. 

Long Short-Term Memory (LSTM) Networks 

LSTM, a type of recurrent neural network (RNN), is best suited to analyze the temporal 

sequence of seismic data [3]. It has the ability to remember past seismic occurrences, and 

hence it can identify long-term earthquake dependencies [7]. The model considers trends 

such as earthquake swarms, large quake foreshocks, and cycles of seismic activity using 

timestamp data [9]. With its ability to learn from past experiences, LSTM can extract 

relationships between historical data and future events to make predictive estimates [4]. 

They have memory in cell states and refresh information by gates: 

ft =  σ(Wf ⋅ [ht−1, xt] +  bf) 

it =  σ(Wi ⋅ [ht−1, xt] +  bi) 

𝐶𝑡  = ft. Ct−1 + it . tanh(Wc ⋅ [ℎ𝑡−1, xt] +  bc) 

Ct =  ft ⋅ Ct−1 +  it ⋅ {C}t 

ot =  σ(Wo ⋅ [ht−1, xt] +  bo) 

ht =  ot ⋅ tanh(Ct) 

                                          Equation 7 

Where ft, it, ot, - input and output gates respectively – regulate information flow [12]. 

LSTM learns earthquake time series data patterns, identifying seismic activity cycles, 

foreshock-mainshock-aftershock sequences, and periodic tremors [14]. 

Every model makes a unique contribution to earthquake prediction, and choosing the optimal 

model is based on the nature of the data and the kind of seismic activity to be studied [20]. 

4.5 Evaluation Metrics 

To ensure rigorous model assessment, 5-fold cross-validation was used. The models were 
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evaluated using [19]: 

Accuracy 

Measures the overall correctness of predictions:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑂𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

                                          Equation 8 

where TP (True Positives) and TN (True Negatives) indicate correctly predicted 

earthquakes and non-earthquake instances, respectively. Accuracy alone is insufficient for 

imbalanced datasets, which is why additional metrics are used. 

Precision, Recall, and F1-Score 

These metrics offer more detail into how the model is performing [20]: 

- Precision (Positive Predictive Value): Assesses how many of the predicted earthquakes 

actually occurred. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
 

                                          Equation 9 

- Recall (Sensitivity): Determines how well the earthquakes that were predicted were 

actually accurate. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
 

                                          Equation 10 

- F1-Score: Considers precision and recall to strike a balance between both deceitful 

results and reliable results. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

                                          Equation 11 

Confusion Matrix 

Makes it possible to understand the veracity of the model outcomes. This helps to offset 

the negative outcomes of false positive predictions (an earthquake predicted but does not 

occur) against the negative detection outcomes (failing to identify an earthquake that is 

actually there) [18]. 

 
Fig.2. Confusion Matrix of models 

ROC-AUC Score 

Examines the ability to classify by computing the Receiver Operating Characteristic (ROC) 

curve, determining: 
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𝐴𝑈𝐶 =  ∫ 𝑇𝑃(𝑑)𝑑𝐹𝑃
+∞,

−∞

 

                                   Equation 12 

with TP(d) and FP(d) as the notation for true and false positive rates at some threshold d. 

The greater the AUC value, the better the model discriminates between earthquake and 

non-earthquake instances [20]. 

 

These metrics are of great relevance in regards to earthquake prediction as the 

consequences of false negatives (missed earthquakes) are catastrophic, while false alarms 

(false positive) will induce undue panic. Striking a balance between precision and recall is 

fundamental to a robust prediction system. 

 

5. Result and Discussion 
Comparison of Prediction Performance Using Different Models in the Context of 

Earthquakes: 

In the study, the researchers attempted to predict earthquakes using machine learning with 

synthetic seismic data that replicates real-world data. The analyzed models include 

traditional machine learning models: Logistic Regression, Decision Tree, K-Nearest 

Neighbors, as well as more advanced models: Convolutional Neural Networks and Long 

Short Term Memory networks. 

 

 

Model ROC-

AUC 

Score 

Accuracy Execution 

Time(seconds) 

Logistic 

Regression 

0.83 0.95 0.32 

Decision 

Tree 

0.79 0.90 0.14 

KNN 0.77 0.90 0.35 

CNN 0.89 0.94 3.50 

LSTM 0.92 0.96 6.00 

Table 1:  Models comparison through ROC-AUC Score, Accuracy and Execution 

Time(seconds) 

 The models were compared on accuracy, running time, and area under the ROC curve for 

the identification of the optimal method to seismic event prediction [1]. 

Accuracy Analysis: 

The comparison of accuracy indicates that deep learning models perform better than 

standard machine learning techniques. The LSTM model with 96% accuracy performed 

best, followed by CNN at 94% and Logistic Regression at 95%. KNN and decision tree 

models performed at a rate of 90%. The enhanced performance of LSTM justifies our 

approach hypothesis that the temporal relations of seismic data sequences will be modelled 

correctly by using recurrent neural networks [4]. 
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Fig.3. Accuracy comparison of models 

 

The success of LSTM in monitoring patterns before earthquakes was probably made 

possible by its capability to memorize previous seismic events through its cell states. As 

discussed in our methodology, LSTM networks are especially well-positioned to handle 

temporal sequences of seismic data and locate long-term patterns such as foreshock-

mainshock-aftershock sequences and periodic tremors [2]. 

 

Computational Efficiency: 

As expected, deep learning models had superior accuracy; however, they were much more 

expensive in processing power. This trade-off is clearly visible from the results: execution 

time for classical methods was under 4 s. CNNs took around 3.5 seconds, with LSTM 

networks taking approximately 6 [5]. The most efficient algorithm, surprisingly, was the 

Decision Tree which had a runtime of 0.14 seconds. 

 
Fig.4. Execution Time comparison 

 

This difference in efficiency is specifically noteworthy for real-time earthquake monitoring 

systems where the prompt analysis may be necessary. In situations demanding immediate 

prediction with moderate precision, the conventional models such as Logistic Regression 

provide an acceptable trade-off between performance (95% accuracy) and speed (0.32 

seconds) [10]. 

ROC-AUC Analysis: 

Again, ROC-AUC figures indicate the performances of deep learning techniques for the 

task. 

LSTM possessed outstanding discrimination capability between earthquake and non-

earthquake activity with an optimum score of 0.98 [13]. 
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Fig.5. ROC curves comparison 

 

CNN (0.97) and Logistic Regression (0.96) lagged behind a bit but took their places 

immediately behind LSTM with surprisingly being featured here despite it being a long-

standing tradition of theirs [17]. 

KNN gave a score of 0.91 and that of Decision Tree was 0.92 [19]. 

These findings illustrate that while all models are effective at good classification, the deep 

learning methods are marginally more discriminative. This is significant in earthquake 

prediction systems because false negatives, or false omission of earthquakes, could be 

highly dangerous, and false positives, or alarms without earthquakes, may cause undue fear 

[20]. 
 

 

6. Conclusion & Future Work 
 

This study attempts to test the feasibility of replacing seismic LSTM models with simpler 

machine learning algorithms such as Logistic Regression. The application of structured 

earthquake metadata as opposed to complex seismic waveforms is less computationally 

expensive while still achieving accuracy. Algorithms like Logistic Regression, K-Nearest 

Neighbors, Decision Trees, and even CNNs have shown to be effective in predicting 

earthquakes in real-time. Unlike LSTM models, metadata-based models are more intuitive, 

less resource-demanding, and pose fewer challenges for integration into early warning 

systems with existing infrastructure. 

 

A notable feature of this work is the integration of WhatsApp notifications via the Meta 

Cloud API with a FastAPI backend. This allows robust communication and accessible 

channels for earthquake alerts through WhatsApp. The use of familiar communication 

platforms aids in improving disaster preparedness by making timely warnings readily 

available, thus closing the gap between prediction and action. 

The emphasis of this study is on the scalability and ease-of-use of metadata-based 

earthquake prediction models, particularly in areas with limited sophisticated seismic 

technology. Moreover, metadata coupled with waveform-based models can synergistically 

improve overall prediction efficacy. 

This cited research approaches the integration of modern methods such as machine learning, 

cloud communications, and real-time alerting to enhance the existing emergency response 

systems. It also aids in devising faster, more readily available, and economical solutions for 

disaster management. 
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Future Work 

The focus of this work is to replace the seismic LSTM models with driven metadata ML 

models like Logistic Regression. The use of structured seismic event metadata is less 

computationally expensive while maintaining the accuracy compared to using complex 

waveforms. Effective real-time prediction is possible through algorithms like Logistic 

Regression, K-Nearest Neighbours, Decision Trees, and CNN. The models utilizing 

metadata have a lightweight structure, which makes them simpler and ideal for 

incorporation into minimalistic early warning systems. 

WhatsApp alerting using FastAPI backend and Meta Cloud API integration allows sending 

instant earthquake alerts through a highly accessed platform. This marked change improves 

the public’s accessibility to such alerts, which enhances disaster preparedness. It also 

serves to bridge the gap between prediction and action. 

This models can be applied profoundly for those regions void of any seismic infrastructure 

due to their scalable nature. These models also show promise of application in remote 

areas. The effectiveness of prediction can further be improved by combining these models 

with waveform models. 

In this case, the advancement needs to provide for the merging of machine learning, cloud 

communication, and real-time alerts to develop advanced systems for emergency response. 

It also establishes the foundation for speedy and uncomplicated disaster management 

systems which are inexpensive. 
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