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The volume of data related to the aquatic environment has rapidly 

increased, and machine learning has become an essential tool for data 

analysis, classification, and prediction. While conventional models used in 

water-related research tend to be more mechanistic in nature, data-driven 

machine learning models may be able to solve more complex nonlinear 

problems efficiently. However, we note that the use of machine learning 

models and findings has been applied in water environment research to 

design, monitor, simulate, evaluate, and optimize management systems. 

ML also contributes to controlling water pollution, improving water 

quality, and watershed ecosystem security. Machine learning algorithms 

are well-developed, robust statistical tools that have been applied to many 

complex problems, including the assessment of different types of water 

quality in surface water, groundwater, drinking water, sewage, and 

seawater. we present future uses for machine learning algorithms in 

aquatic environments. 

 

 

 

Introduction  

 
Polluted wastewater generated by rapid economic development is a direct threat to natural 
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water ecosystems. This has led to the development of a multitude of strategies to combat 

water pollution. Pollution is a major environmental hazard faced by humanity, and the 

analysis and assessment of water quality have greatly enhanced the efficiency of pollution 

control. Different methodologies have emerged globally to assess water quality such as 

multivariate statistical, fuzzy inference, and water quality index (WQI). [1] Even following 

accepted protocols, the results of water quality assessments can differ significantly from one 

experience to the next due to the specific parameter evaluated. Evaluating every water 

quality parameter is impracticable, given high cost, technical complexity, and variability of 

water quality parameters. [2] The advancements in machine learning over the last decade 

have resulted in a degree of optimism among academia that large quantities of data may in 

the future be procured and analyzed to meet challenging water quality assessment 

requirements. 

Machine learning algorithms, originated from artificial intelligence, [10] analyze data to 

predict new data. It is one of the most well-known methods for data analysis and processing 

owing to its precision, flexibility, and extensibility. Machine learning is an approach to 

model nonlinear relations among grouped factors and to help discover the true mechanisms. 

[10] The versatility of machine learning, paired with its promise as a tool for environmental 

research and engineering, enables unprecedented opportunities for analyzing complex 

environmental issues. Although complicated, the application of machine learning in water 

quality analysis and assessment could make it more accurate. Drinking water, wastewater, 

groundwater, surface water, ocean, freshwater, and other kinds of water are complex. [3] 

Different types of water such as lake, river, and groundwater are different from one another 

and they have different complexities which make it difficult to conduct research regarding 

the quality of the water as they need to be treated differently. Based on previous research, 

these challenges can be addressed by machine learning. Here, we evaluate the advantages 

and disadvantages of commonly used [23] machine learning algorithms, their application, 

and performance in a range of water systems (Fig. 1). 

 

 
Fig. 1 illustrates the extensive application of machine learning in water systems 

 

Overview  
 

Machine learning is a powerful data analysis technique that has become a popular choice for 
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identifying patterns or making predictions from large datasets generated by a plethora of 

scenario-based approaches. [2] What testers must do before practicing machine learning 

must include: data construction, proper algorithm selection, training model, and model 

validation. Out of these, one of the most critical is algorithm selection. [5] Two Main Types 

of Machine Learning Technologies: Supervised and Unsupervised Learning. The key 

difference between these two classes is the presence of labels in the datasets. With supervised 

learning, we learn functions to make predictions from labeled training datasets. In the case 

of training data, each instance contains input and expected output values. Supervised 

learning algorithms [3] search for the relationships between input and output values, in order 

to create a prediction model that predicts the outcome given the important input data. Many 

supervised learning methods have been proposed ranging from linear regression to [7] ANN, 

DT, SVM, naive Bayes, KNN, RF, etc., which can be used for data classification as well as 

regression. 

 

Unsupervised learning is a pattern recognition problem, and it works without any labels. 

Unlabeled training datasets are used. Unsupervised learning [23] uses dimensionality 

reduction and clustering to group the training data. The number of categories is unclear as 

well as what they exactly are. It is widely used for classification and association mining 

under the umbrella of unsupervised learning. Commonly used methods in unsupervised 

machine learning are principal component analysis (PCA) and K-means. [2] Reinforcement 

learning is a machine learning method that lets machines derive appropriate reactions to 

unanswered problems. [12] It is the least common class of machine learning to be employed 

in the topic of the aquatic environment compared to the first two classes. 

 

3. Application of machine learning for different water environments  
 

Machine learning for water treatment and management systems [1] (taken from Gassman et 

al. ), including real-time monitoring, prediction, pollutant source tracking, concentration 

estimation, resource allocation, and [23]technology optimization 

 

3.1. Applications in surface water  
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Fig. 2 showcases the diverse applications of machine learning algorithms in different 

aspects of water treatment and management. The figure highlights commonly used 

techniques such as support vector machines (SVM), random forests (RF), artificial 

neural networks (ANN), self-organizing maps (SOM), decision trees (DT), principal 

component analysis (PCA), and extreme gradient boosting (XGBoost), in addressing 

key parameters like dissolved oxygen (DO) levels and micropollutant (MP) detection 

 

Wastewater composed of human-originated effluent from municipal and industrial activities 

is one of the principal sources of urban water quality degradation. Machine learning has been 

increasingly applied in surface water quality research. [7] Many approaches are present to 

predict surface water quality and analyze it; Table 1 presents some. The models for machine 

learning have been optimized, and their prediction accuracy improved.  

Getting data is an essential step in building machine learning models. Water quality 

monitoring data, either [18] compliance-based or at intervals, can provide benchmarks for 

water system management. Traditional monitoring methods are still heavily relied on by 

environmental authorities. Conventional means for monitoring in situ are impractical. [3] 

Remote sensing technologies not only offer the potential for timely and extensive monitoring 

of water quality but also expose the transport and dispersion of such challenging and elusive 

contaminants to conventional techniques. Sagan et al., for instance, found that machine 

learning with experiment-based optimizations allows sophisticated, real-time monitoring 

sensor data and satellite data. [18] Compared to conventional models, the accuracies of PLS, 

SVR, and DNN models were more impressive. Several water quality characteristics, such as 

[7] pathogen concentration, cannot be assessed directly by remote sensing when either no 

optically active remote sensors currently exist or high-resolution hyperspectral data are 

lacking. But these variables can be indirectly approximated from other available variables 

which are measurable. [5] Wu et al. used a convolutional neural network (CNN) in to 

differentiate between clean and unclean water images. The attentional neural network was 

applied to a water surface image dataset and proven to work well. [2] With CNNs, we use 

the reflectance image when we input it directly, so feature engineering and parameter tuning 

are not needed. A sparse matrix and performance degradation may also be caused if the data 

is missing, incorrect, or integrated into the supercomputer in a destroyed form, whether due 

to equipment error or human error. 
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Task 
Algorithms 

Used 

Sample 

Size 
Input Data Performance Reference 

Predicting 

Oxygen 

Levels 

(DO) 

BWNN, 

ANN, 

ARIMA, 

BANN 

340 
Oxygen levels in 

the water 

BWNN performed the 

best with 95% accuracy. 

BANN was just behind 

with 90%, and ARIMA 

and ANN were a bit less 

accurate, with ARIMA at 

80% and ANN at 75%. 

 

 

Predicting 

Oxygen 

Levels 

(DO) 

LSTM 240 
Oxygen in the 

water 

LSTM was successful at 

70% of the sites, with 

decent results overall. 

 

 

Predicting 

Oxygen 

Levels 

(DO) 

PNN 1700 

Water quality info 

like temperature, 

pH, and nutrients 

 

PNN achieved about 73% 

accuracy, showing strong 

correlation with water 

conditions. 

 

 

Predicting 

Oxygen 

Levels 

(DO) 

CCNN 210 

Oxygen levels, pH, 

temperature, and 

other water quality 

factors 

 

Achieved 80% accuracy 

with a slight margin of 

error. 

 

Predicting 

Biological 

Oxygen 

Demand 

(BOD) 

DNN, SVR, 

RF 
29000 

Sea conditions, 

temperature, and 

oxygen levels 

 

DNN did about 20% 

better than other models 

in terms of accuracy. 

 

 

Predicting 

EC, 

HCO3–, 

SO4²– 

SVM, ANN 

Data 

from 

1960s 

pH levels, 

temperature, and 

general water 

chemistry 

 

SVM had a small 

advantage over ANN, 

with SVM at 85% and 

ANN at 80%. 

 

 

Predicting 

Total 

Nitrogen 

(TN) & 

Phosphoru

s (TP) 

SVM, ANN 680 

River flow, rainfall, 

oxygen, TN, TP 

 

SVM performed better 

with 88% accuracy than 

ANN at 82% accuracy. 

 

 

Predicting 

Water 

Quality 

DT, RF, DCF, 

and others 
31000 

Oxygen, ammonia, 

pH, temperature, 

and more 

 

Decision Trees and 

Random Forest hit a great 

accuracy of 85% and 

90%, leading the pack. 

 

 

Predicting 

Nutrients 

(TRP, 

NO3–N, 

TP, NH4–

N) 

RF 20000 

Water temperature, 

flow, chlorophyll 

levels, and pH 

 

Reduced error by 50% 

compared to simpler 

models, with solid 

performance. 
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Table 1 . MACHINE LEARNING IN WATER QUALITY MONITORING 

 

Abbreviations: 

• DO: Dissolved Oxygen, BWNN: Bootstrapped Wavelet Neural Network, ANN: 

Artificial Neural Network, ARIMA: Autoregressive Integrated Moving Average, 

BANN: Bootstrapped Artificial Neural Network , LSTM: Long Short-Term Memory 

PNN: Polynomial Neural Network BOD: Biological Oxygen Demand COD: 

Chemical Oxygen Demand EC: Electrical Conductivity , CCNN: Cascade 

Correlation Neural Network TDS: Total Dissolved Solids RMSE: Root Mean Square 

Error DNN: Deep Neural Network SVR: Support Vector Regression RF: Random 

Forest SVM: Support Vector Machine TP: Total Phosphorus TN: Total Nitrogen 

TRP: Total Reactive Phosphorus TOC: Total Organic Carbon TSS: Total Suspended 

Solids DTP: Dissolved Total Phosphorus BGA-PC: Blue-Green Algae Phycocyanin 

Predicting 

Chlorophyl

l-a 

SVM, ANN 340 

Chlorophyll-a 

levels, temperature, 

wind speed 

 

SVM showed a slight 

edge over ANN, with 

SVM at 88% and ANN at 

83%. 

 

 

Predicting 

Algal 

Blooms 

ANFIS 880 

Water data like 

COD, BOD, 

chlorophyll, 

nutrients, 

temperature 

ANFIS showed the best 

results, working well in 

both predicting and 

classifying blooms. 

 

 

Optimizing 

Hyperpara

meters 

SVR 230 

Chlorophyll-a, 

turbidity, oxygen 

levels, pollution 

 

Achieved an accuracy of 

76% for chlorophyll and 

80% for suspended solids. 

 

 

Detecting 

Water 

Pollution 

Attention 

Neural 

Network 

920 Water body images 

Clean water detection had 

67% accuracy, and 

polluted water had 71%. 

 

 

Detecting 

Water 

Pollution 

CNN, SVM, 

RF 
95 

Satellite images and 

water quality levels 

CNN led with 94% 

accuracy, SVM was at 

90%, and RF reached 

85%. 

 

 

Assessing 

Heavy 

Metal 

Pollution 

PCA 40 
Metal content (Cu, 

Pb, Zn, etc.) 

PCA successfully 

identified polluted areas 

with around 83% 

accuracy. 

 

 

Selecting 

Water 

Quality 

Indicators 

(WQI) 

PCA 220 Oxygen levels, pH, 

TDS, BOD, nitrate, 

chloride, 

temperature 

PCA helped identify key 

water quality parameters 

like DO and pH, 

contributing to WQI 

calculation. 

 

 



 

 

 
 

 

7 | P a g e  

 

FDOM: Fluorescent Dissolved Organic Matter CNN: Convolutional Neural 

Network PCA: Principal Component Analysis WQI: Water Quality Index 

There are many different ways of handling the Data cleaning, it includes using of averages 

and medians, other alternative method is using combination of machine learning and matrix 

completion to supplement the raw data. We cannot directly use the set of data for Data 

cleaning.  For this, [18] Ma et al suggested an approach in which the DNN (Deep Neural 

Network) and deep Matrix Factorization (deep MF) is combined together to predict the [24] 

Biological Oxygen Demand (BOD) . Things not only done by suggesting  but also have to 

be checked with a real-life case. So they went with the verification for this method and 

verified the validity and reliability of this method using the New York Harbor waters as a 

case study. Data cleaning enhances the quality of the data and thus enhances the accuracy of 

machine learning model applications.  

In general there are two aspects to which the prediction accuracy is related for the machine 

learning applications i.e., the model selection and the quality of the training dataset. In 

machine learning there are two [3] algorithms:- Artificial Neural Networks (ANNs) and 

Support Vector Machines (SVMs) which is used for classification and regression, but they 

differ in their approach and strength. Both have provided a great excellence performance in 

predicting the water quality components. There are some cases, where [16] SVM’s prediction 

accuracy is higher and also show higher generalization ability than ANN. The reason is that 

the optimization of model parameters in neural network is quite unstable, which in return 

affected the accuracy of the ANN by nonlinear disturbances. SVM becomes more effective 

than ANN when it comes to minimizing the generalization error as [22] SVM uses an upper 

bound on the generalization error instead of minimizing the training error. Since, the river 

system has dynamically changed with more complexity over the period of time , therefore 

one of the most effective way to manage rivers is the monitoring of water quality in real 

time, on in the absence of monitoring conditions make predictions based on the other data. 

Researchers have approved that long short-term memory(LSTM) Networks and [23] 

bootstrapped wavelet neural networks (BWNN) are fully sufficient to handle fluctuating and 

nonseasonal time-series water-quality data. [6] Autoregressive integrated moving average 

(ARIMA) model is from one of the traditional statistical theories, which can be applied to 

the time series prediction, but basically they are part of linear models. [26] ARIMA is less 

superior than the BWNN model as it is influenced by the self-adaption during the learning 

process of the ANN and the time-frequency properties of the wavelet basis functions. On the 

other hand,  LSTM model (type of recurrent neural network structure), learns directly from 

time-series data. LSTM and BWNN can recognize the nonlinear relationship between the 

variables and their respective predicted variables more accurately, and then transfer the vital 

information from the past to the future. 

The accuracy of the prediction of machine learning models is dependent on the features 

which are used to train the models. If there are redundant variables present, then it will tend 

to the reduce the inverse power and accuracy of the model, and also increase the complexity. 

The most widely concerned surface water quality parameters is the dissolved Oxygen (DO) 

[24] , which tells about the aquatic ecosystem’s status and how much it is suitable for the 

aquatic organisms to sustain. In the Danube River, the linear polynomial neural network 

(PNN) was used to get a insight of DO concentration. The most important features which 

were affecting the prediction accuracy which  include:- among 17 water quality parameters, 
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temperature, pH, BOD, and phosphorus concentration. [26] St. John’s River, USA, has 

prediction of DO concentration among the five input features (chloride, NOx, total dissolved 

solids, pH, and water temperature), and among all these five inputs pH and NOx are strongly 

correlated with DO which can in turn affect the prediction accuracy. These outcomes are 

very familiar with those obtained by the [24] Chen et al, who stated that the Input parameters 

do affect the prediction performance of the model. Apart from other regular water 

parameters, there is another concern in surface water quality prediction which is 

eutrophication. Formulated on the adaptive neuro-fuzzy inference system (ANFIS) model, 

[16] Ly et al. found that there are certain reasons like combined interaction of the nutrients, 

organic matter, and environmental elements which is responsible for algal blooms. Part et al 

prediction the concentration of chlorophyll-a [2] in two reservoirs in the U.S., by using the 

meteorological data and weekly water quality data and he found that SVM and ANN both 

had near about similar prediction accuracies. The prediction accuracy get highly improved 

with the addition of meteorological factors. More factors like regional hydrological and 

socioeconomic factors can be added to the machine learning model so that the results may 

provide much stronger support for the comprehensive management of the regional water 

environment.  

Moreover, the machine learning model’s performance can also depend on its architecture.  

We should thoroughly go through and analyze the logical structure of algorithms as it is also 

a crucial part in the successful application of machine learning.  When the [16] PNN gets 

compared with the other traditional neural network models, it has an advantage over them. 

The advantage of PNN in determining the key model parameters which are discussed above 

is that the number of hidden neurons and layers of PNN is directly determined by the data 

which saves the time for trial. The lower root mean square error (RMSE) of [7] DNN model 

which is 19.20%-25.16% as compared to the traditional machine learning model. The lower 

RMSE value of [16] DNN indicates better predictive performance. The reason behind the 

lower RMSE value is that there are multiple layers between the input and output layers of 

DNN, and also it uses more advanced activation functions than ANN. It helps in reducing 

the difficulty of training as it is more favourable to model convergence than the sigmoid used 

by traditional ANN. [1] LSTM works relatively well based on time series, when it come to 

predict water quality over the time. 

3.2. Applications in Groundwater 

It is crucial to ensure the safety of ground water for public health, as it is an important source 

of drinking water. Machine learning has potential applications in groundwater analysis, 

which includes assessing the quality of groundwater and predicting pollution sources. 

Multivariate statistical techniques, including [24] Principal Component Analysis (PCA) and 

cluster analysis, have been employed for groundwater evaluation for a long time . Techniques 

like Decision Trees(DT), Random Forests(RF), Support Vector Machines(SVM) and 

Artificial Neural Networks(ANN) are also utilized to determine the quality of groundwater. 

Comparing different ML algorithms is what studies of the same tend to emphasize in order 

to determine models that are applicable for specific problems. For example, [23] Jeihouni et 

al.  compared five data mining algorithms (such as typical DT, RF, chi-square automatic 

interaction detector, and Iterative Dichotomizer 3) to determine significant parameters 

influencing groundwater in semi-arid areas and estimate high-quality zones in Tabriz, Iran. 

[24] Lee et al. applied a self-organizing map (SOM) and fuzzy c-means clustering to classify 
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urban groundwater in Seoul, South Korea, in terms of pollution levels and spatial 

distribution. Geographic Information System (GIS) software is often combined with ML to 

produce pollution maps and determine contaminated areas more accurately. 

The intricate hydrogeological conditions of groundwater, unlike surface water, render quality 

prediction difficult. However, ML has been applied to evaluate large scale data and 

predictions of future quality. [23] Agrawal et al. integrated PSO with SVM to estimate and 

predict groundwater quality index (WQI), proving the feasibility of the method. Individual 

pollutants such as nitrate and arsenic have been successfully modeled: [25] Arabgol et al. 

estimated nitrate concentration with SVM, whereas Sajedi Hosseini et al. combined the use 

of Boosted Regression Trees, Multivariate Discriminant Analysis, and SVM to forecast 

nitrate pollution risk in Iran's Lennart Plain. Ransom et al. applied ML to predict nitrate 

levels throughout the U.S., demonstrating its feasibility. Cho et al employed ANN to forecast 

risks of arsenic contamination in Cambodia, Laos, and Thailand. [23] Groundwater levels 

have also been predicted by models like ANFIS, DNN, and SVM, with DNN reporting the 

best seasonal prediction accuracy. Yadav et al.  employed ensemble modeling to forecast 

levels in Indian cities with an accuracy of 85%. 

Ensuring the safety of groundwater is imperative, therefore, determining the causes of 

pollution may be found to be useful. [24] PCA and cluster analysis are common in recent 

studies. Celestino et al.  used PCA with subsequent K-means cluster analysis to distinguish 

natural and anthropogenic geochemical alterations. Chen et al. also utilized PCA and 

multivariate statistical methods to identify factors influencing groundwater quality. 

Decision trees in data mining are commonly employed to predict groundwater quality 

dynamics. The models' algorithms can learn to associate input-output variables with 

understandable rules. [24] RF, for instance, performs well because it has high accuracy and 

generalization power—attaining 97.1% [1] accuracy on continuous datasets and providing 

realistic insights for groundwater planning. [9] Ensemble models, particularly those based 

on boosting techniques, improve prediction by aggregating weak learners. Even though 

different models are combined to create models with less variance, overfitting is still an 

issue. 

In conclusion, machine learning offers robust tools for groundwater quality analysis, 

prediction, and management. Methods from statistical analysis and decision trees to neural 

networks and hybrid models have all played a role in more accurate assessments. However, 

model interpretability, data availability, and proper model choice are still essential for 

sustainable groundwater management. 

3.3. Applications in Drinking water 

Machine learning has applications in drinking water treatment and management systems, 

including from source water management to processes of treatment, distribution networks, 

and decision assistance. Drinking water typically comes from water available at surface or 

in ground. Employment of ML in assessing and predicting source water quality can assist 

with early detection and control of contaminants. 

In a research paper by [2] Bouamar et al. , the viability of using multisensor-based Artificial 

Neural Networks (ANN) and Support Vector Machines (SVM) for dynamic water quality 

monitoring was evaluated as far back as 2007. Both models achieved satisfactory 
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classification accuracy for the two water quality categories tested, and [18] SVM was shown 

to be more stable than ANN. Subsequently, Wu et al. developed an adaptive frequency 

analysis technique, employing water quality records from four Norwegian cities. Their 

method provided useful information for risk alerting at early stages, water quality 

management, and strategic planning. Other contributions include [20] Liu et al., who used 

Long Short-Term Memory (LSTM) networks and Deep Neural Networks (DNN) to create a 

time-series model that could predict water quality six months ahead with significant 

accuracy. Arnon et al. also used SVM to create a system that could predict pollution events 

under unknown conditions using ultraviolet absorption measurements. The model provided 

high detection accuracy on four datasets and kept error rates low. 

Despite studies having been conducted with emphasis on chemical and physical parameters, 

microbial indicators, specifically [25] Escherichia coli (E. coli), have not been considered 

frequently. ML can also be utilized in the estimation of coagulant and disinfectant quantities 

in water treatment plants. Owing to its ease of operation and stability in performance, [3] 

SVM is also frequently applied to flocculation and disinfection process design. [16] Wang 

et al. , for example, established an SVM-based model of chemical dosing control for 

controlling residual free chlorine based on predictive residual free chlorine levels. [20] SVM 

outperformed the classical proportional-integral-derivative (PID) feedback controllers in 

effectiveness. 

Prioritizing the quality of drinking water supply has motivated research in monitoring the 

correct operation of urban water infrastructure, fault detection, and disaster anticipation. 

Because of the complexity of the systems, water from water treatment plants, meeting the 

required standards, can also be re-contaminated during transport. This can be monitored by 

biological stability indicators and controlled by disinfection techniques. 

Cluster analysis [12] has been found to be effective in identifying water quality differences 

between networked systems. Tian et al., for instance, applied clustering to evaluate the 

contribution of mixed-source water to aluminum (Al) residue concentrations in large-scale 

urban water supplies, including seasonal patterns and Al transport behavior. [20] Brester et 

al. obtained precise water quality assessment through casting methods with a Random Forest 

(RF) algorithm. 

In the meantime, pipe burst failures can contribute to significant loss and contamination of 

water during transport. While deep learning algorithms may be able to predict where pipe 

bursts are likely to happen, the results nevertheless contain high degrees of uncertainty. For 

this, [26] Rayaroth et al. presented a bagging classifier based on random decision trees 

optimized with a shuffled frog-leaping algorithm successfully detecting leak locations in 

distribution pipes with low numbers of sensors deployed at optimal positions. The designed 

pipeline lifespan is yet another crucial aspect of planning water supply systems. [23] 

Almheiri et al.suggested a meta-learning model combining a neural network, and found that 

residual chlorine concentration has a significant impact on pipe lifespan. 

Furthermore, water distribution system pollution incidents have been predicted using [22] 

SVM models. Park et al. also quantitatively assessed the impacts of disasters on water 

distribution systems by combining PCA, AHP, RF, and XGBoost models. Nonetheless, real-

time data acquisition is still a problem, which hinders the application of the method in 

practice. 
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Water production capacity today becomes a determining factor in balancing regional 

development and population growth. Zhang et al.  developed a [19] hybrid statistical model 

combining ANN and genetic algorithms for predicting the operation of water treatment 

plants. It can predict changes in production rates under different scenarios of fluctuating 

parameters, which enable operators to rapidly adjust treatment system settings. Concurrently, 

[18] Cardoso et al. created an automated monitoring system for urban water networks based 

on time-series clustering. Their findings indicated that water demand peaked between 3 a.m. 

and 6 a.m. during summer seasons, probably because of irrigation of public green areas. To 

enhance short-term water demand prediction, Guo et al. employed a [22] Gated Recurrent 

Unit (GRU) network with an interval setup of 15 minutes and successfully predicted water 

consumption for the next 15 minutes as well as the next 24 hours. Ghiassi et al. experimented 

with three models—Dynamic Artificial Neural Network (DAN2), time-delay focused neural 

networks, and K-Nearest [19] Neighbors (KNN)—for daily, weekly, and monthly water 

demand forecasting in Tehran. Among these, [22] DAN2 provided the most accurate 

predictions, with accuracy levels of 96%, 99%, and 98% for the daily, weekly, and monthly 

predictions, respectively. 

In conclusion, ML methods like ANN and SVM are now universally applied in drinking 

water applications, particularly when dealing with high-dimensional datasets. Their short 

training times of a few seconds make them useful for real-time dynamic monitoring of 

drinking water quality and safety. While [17] ANN’s accuracy has improved significantly 

because of advances in training methodologies, its susceptibility to noise remains a concern. 

SVM, by contrast, is inherently more noise-resistant, which has prompted growing interest 

in combining both approaches to leverage their respective strengths. 

3.4. Applications in Wastewater 

Machine learning (ML) contributes greatly to wastewater treatment through facilitating 

water quality monitoring and prediction, optimizing treatment technology, and optimizing 

the operation and management of wastewater treatment plants (WWTPs). [20] Industrial and 

domestic wastewater contains a diverse variety of contaminants, thus requiring a quality 

assessment prior to treatment . Rosen et al. came up with a method that integrates 

multiresolution analysis and principal component analysis (PCA) and provides more 

sensitivity in the monitoring of sewage indicators over various scales than PCA alone. 

Large-scale data requires real time online monitoring. [22] A soft sensor based on a black-

box model, for example, was proposed for real-time monitoring of E. coli , and it was shown 

that E. coli concentrations significantly increase following heavy rains—most likely due to 

suspended sewer sediments being mobilized by urban storm runoff Through the fusion of 

soft sensors and [24] artificial neural networks (ANN), scientists have developed systems 

able to continuously monitor chlorine and ammonia levels, also providing solutions towards 

mitigating WWTP high operation costs and technical complexities [19] Qin et al. created a 

sensor system with a boosting-iterative predictor weighting-partial least squares (Boosting-

IPW-PLS) method combined with UV spectrometry and turbidimetry. The multiple sensor 

system, which detected chemical oxygen demand (COD) and total suspended solids, 

successfully reduced irrelevant variables by giving lower weights to them. The predictive 

model obtained was well representative of real water quality data, supported by a high 

correlation coefficient. 
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ML can be utilized to examine past data to optimize wastewater treatment systems. [6] Fang 

et al. employed SVM with an adaptive genetic algorithm to model anaerobic, anoxic, and 

oxic treatment conditions. Their research was designed to minimize anoxic tank capacities, 

thus conserving space. ML has also optimized tertiary treatments like reverse osmosis (RO), 

nanofiltration (NF), ozonation, and adsorption. [17] Cha et al., for instance, used a random 

forest (RF) model to predict the removal of micropollutants (MPs) in ozonation and attained 

enhanced removal efficiencies. High-resolution fluorescence excitation-emission matrix 

(EEM) data has also enhanced ML models' precision by enabling enhanced analysis of the 

nonlinear dependencies between organic matter and oxidizer exposure. For membrane-based 

treatment, MP removal prediction is vital in selecting appropriate membranes. [7] [14] 

Teychene et al.  employed decision trees (DT) to identify the mechanisms by which RO and 

NF systems remove MPs, and concluded that particle size exclusion, electrostatic repulsion, 

and adsorption were the predominant mechanisms. [21] XGBoost was also employed to 

predict MP removal efficiency in RO and NF systems. Sigmund et al. built two neural-

network-based models for the selection of the most efficient adsorbents for various 

pollutants. These research studies highlight the enormity of what ML can contribute to 

advanced treatments of wastewater, particularly when used to treat emerging pollutants. 

Predicting and understanding intricate environmental circumstances are offered by machine 

learning. 

ANN is capable of solving complex nonlinear environmental challenges, especially when it 

comes to removing pollutants [8]. 

An ANN model that predicts COD and BOD contents in treated wastewater was developed 

by [13] Bayat Varkeshi et al.. Currently, the majority of water quality prediction models aim 

to predict concentrations of a particular pollutant. Abdi et al. employed CatBoost, following 

an evaluation of tetracycline (TC) photodegradation rates under different conditions, to 

precisely predict TC removal when utilizing metal-organic frameworks. [17] Baek et al.  

built three models—RF, SVM, and ANN—to forecast the removal of five MPs, with RF 

yielding the best results. 

Biological indicators may also be simulated using ML. Bayesian methods, such as naive 

Bayes and [15] semi-naive Bayesian networks, have been used to predict pathogen removal 

efficiency and study reduction-relationship, operating conditions-relationship, and 

monitoring parameter-relationship. RF was used by Roguet et al.  to predict Clostridiales and  

[17] Bacteroidales levels in wastewater. RF also assists in creating methods for tracing 

sources of fecal contamination and hence preventing waterborne disease transmission. 

The operation of [11] WWTPs relies on numerous parameters, and management and 

maintenance of WWTPs can have an issue on costing. On that note, machine learning can 

be utilized to make sense in investigating the possibilities of cutting cost, along with 

enhancing operation. Gomez-Munoz et al. utilized Bayes' theorem to quantify various  [17] 

WWTP cost elements, facilitating improved construction, regulatory, and operational 

decision-making. Harmful pollutants in sewer systems may interfere with plant operations, 

but models such as [8] XGBoost and RF can assist in their detection as well as sources. Even 

though flow-measuring sensors exist in sewer pipes, the likelihood of inaccuracy due to 

contamination, corrosion, and extreme turbidity increases with time. This may result in 

inaccurate measurements. Deep learning optimizes measurement accuracy by utilizing 
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sensors. These flow-measurement sensors are usually placed within sewage pipes. [21] 

Instability in measurement due to contamination, corrosion, and high turbidity, though, can 

result in erroneous measurements. Deep learning has the potential to optimize the accuracy 

of measurement in different scenarios by upgrading current sensors. [8] Ji et al. trained a 

model using past data on recognized sensor failures to detect faults, adjust the treatment 

process accordingly, and ensure the continuous running of the WWTP. 

In conclusion, Machine learning improves wastewater treatment by making real-time water 

quality monitoring, pollutant prediction, and process optimization possible.  

Models such as ANN, SVM, RF, and XGBoost sense toxic substances including E. coli, [17] 

COD, BOD, and micropollutants, enhancing the detection of pollution at an early stage and 

improving treatment processes like ozonation and membrane filtration. Soft sensors and 

deep learning enhance hazard monitoring accuracy and sensor reliability, but [21] ML also 

facilitates the choice of treatment chemicals, the identification of sources of pollution, 

equipment failure prediction, and operational cost management. In summary, ML makes 

wastewater treatment systems more efficient and safer. 

3.5 Application of machine learning in marine environments 
 

Nowadays [13] seawater pollution is becoming a serious threat as it is affecting the 

ecosystem of the Earth. Introducing technology, with the help of machine learning 

monitoring seawater pollutants would become easier. In short, we can resolve these issues 

by providing different solutions. Bhagat et al, established a lead-protection algorithm by 

using XGBoost, and by using the historical monitoring data from the [4] Bramble and 

Deception Bay stations in Australia he trained the model.  As a result, it worked successfully 

and found that the trained model performed very well in selecting the input parameters and 

predicting the water quality. [15] Gon calves et al. introduced a waste mapping program 

which was based on radio frequency (RF) and an automatic unmanned aerial vehicle (UAV) 

system so that it could monitor coastal plastic waste automatically. To predict the 

concentration of coastal microbial pollution in beach water, an ensemble machine learning 

approach with a two- layered learning structure was proposed. For the improvement of the 

accuracy of [22] antibiotic resistance gene (ARG) prediction in beach water, [6] LSTM-

CNN model was implemented by Jang et al. and predicted a single ARG successfully. Using 

machine learning classification algorithms, Mancia et al. found differentially expressed 

genes in dolphins which was exposed to marine pollutants.   

 

Moreover, many other researchers have deeply focused on developing the surveillance 

technologies for algal blooms which can lead to severe contamination. Further, XGBoost 

model was trained by adding more efficient spectral characteristics of different water types 

and algal blooms by [11] Ghatkar et al. helping the model to distinguish between the algae 

and identify the algae that cause algal blooms. [4] Du et al. used a method called hierarchical 

cluster analysis water quality evaluation based on the which was based on the [9] 

Mahalanobis distance, for the evaluation of the water quality along with the North Yellow 

and Bohai Seas. Coming to the conclusion, there are many different machine learning 

methods which can identify the types of seawater pollutants, can distinguish between the 

different species present, determine the concentration and distribution of pollutants, and at 

the end provide a useful data of the status of the marine organisms. Just by combining the 

human mind and technology we can make the best results which has a positive effect on the 

ecosystem of earth and our’s life also. 
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In order to protect the marine ecosystem,  seawater quality monitoring plays a very crucial 

role. Many researchers have applied the machine learning in monitoring of seawater quality. 

In the year 2001, a researcher named Alshehri et al. proposed a near-shore water quality 

prediction model which was based on KNN. [13] Further Sheng et al. combined BPNN, 

SVR, and LSTM models to establish a water quality prediction method, and this method 

provide great results by improving the water quality prediction accuracy. Another researcher, 

Zohu et al. proposed a water quality prediction method on an already improved grey 

regression analysis algorithm and [14] LSTM on the basis of the multivariate correlation and 

the time series characteristics provided in water quality information. Du et al. collected data 

by a geosynchronous ocean color imagery and from 1240 water quality sample points along 

with the coast of [15] Zhejiang, analyzes it using a water quality assessment method with a 

geographic neural network weighted regression model.  As per reports [23], by 2050 75% of 

the world’s population will face a freshwater crisis. In the areas where water shortages at its 

extreme, desalinated seawater is an important source of freshwater for them. Some seawater 

desalination difficulties will remain with the low efficiency and reliability of desalination 

systems is being the major obstacles.  Alshehri et al. decided to improve the seawater 

treatment performance of water treatment plants, so he used a [6] CNN model and transfer 

the learning in order to classify salt particles with different concentrations in water. [21] 

Chawla et al. used the machine learning algorithms like linear regression, RF, SVM and 

LSTM, in such a way that he predicted the salinity and development trend of the Salton sea 

which makes easier for the long-term management of seawater salinity and seawater 

desalination. 

 

In the previous literature, the single water quality prediction models has been thoroughly 

described and recently the integrated model has come into action. 

 

We have discussed different-different mechanisms which works upon the different input 

features and also provide different predictive performances. The integration model was 

suggested by [21] Sheng et al. When we talk about the prediction model, the best fits data 

first or the one which may have a higher chance in predicting the prediction is selected before 

making the prediction. [21] This is a model selection algorithm based on input features, on 

the other hand XGBoost method which was proposed by Bhagat et al. can screen input 

features and can select more than 1 (5-9) features out of 21 features to be combined with 

ANN and the other application methods. During the training stage, the information gathered 

by the model will not be lost. [11]  High accuracy and fast speed is the main advantages of 

XGBoost model which makes it a promising modeling algorithm. But when it comes to 

feature selection algorithm, then it will depend on the sample size. 

 

Concluding remarks 
 

As we have discussed so many methods and algorithms which is used by the machine 

learning models to solve the water environmental issues . Basically, it acts as a powerful tool 

as we can predict and get different insights from this such as water quality, optimize water 

resource allocation, manage water resource shortages, etc.  Apart from this, there are several 

challenges which remain in fully applying machine learning approaches in this field to 

evaluate water quality:  

 

(1)Machine learning works on the large amounts of high quality data . Providing sufficient 

data with high accuracy in water treatment and management systems is quite a difficult task 

as it leads to high cost consumption and there might have limitations in technology also. 
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(2)There are complex conditions in real water treatment and management systems, so the 

currently introduced algorithms can be applied to some specific systems which obstruct the 

wide application of machine learning approaches. 

 

(3)To apply these machine learning algorithms practically would require researchers who 

must have the professional background knowledge.  

 

To overcome these challenges the following changes should be considered: 

 

(1)More improved and advanced sensors, including soft sensors, should be introduced and 

apply them in water quality monitoring to gather the sufficient and accurate data . All these 

would enhance the efficiency of the machine learning models . 

 

(2)As per the water treatment and management systems, the algorithm’s feasibility and 

reliability should be improved and more effective algorithms and models should be 

developed. 

 

 

(3)More advanced knowledge about the technology used in machine learning should be 

provided and train them. Develop advanced machine learning technique and use them in 

engineering practises.  
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