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In software development, maintaining software quality and reliability 

through thorough testing is vital. However, as software systems become 

increasingly complex, managing large volumes of test cases presents 

significant challenges [1]. To tackle this problem, effective test case 

prioritization is necessary to ensure that the most critical tests are 

executed first  [2]. This paper introduces an innovative approach to test 

case prioritization by combining clustering techniques, specifically K-

means, with machine learning algorithms. We explore how K-means 

clustering can group similar test cases to improve prioritization 

efficiency [3][4]. Furthermore, we examine the performance of several 

machine learning models, including Decision Trees (DT), Random 

Forests (RF), and Neural Networks (NN), comparing their results against 

traditional methods. The study evaluates these approaches using diverse 

datasets and metrics such as the number of executed test cases, fault 

detection rate, and execution time [5]. Experimental findings 

demonstrate that integrating K-means clustering with machine learning 

techniques can enhance prioritization by reducing test execution efforts 

while preserving or even boosting fault detection capabilities. We also 

highlight the limitations of the proposed method and suggest future 

research opportunities aimed at further optimizing test case prioritization 

through advanced machine learning strategies. Overall, this framework 

offers important contributions toward developing more effective and 

reliable software testing processes. 
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1. Introduction 
 

The growing complexity of software systems demands comprehensive testing to guarantee their 

reliability and performance. Regression testing, which ensures that recent changes such as bug fixes 

and new features do not disrupt existing functionalities, is a vital aspect of this process [1]. To 

improve the efficiency of regression testing, various techniques are employed, including K-Means 

selection, minimization, and prioritization. One such technique, K-Means Prioritization (TCP), ranks 

test cases based on factors like fault detection, fault severity, execution time, and code coverage [6]. 

This approach helps identify critical faults earlier, enhancing testing efficiency and minimizing 

potential risks. 

The effectiveness of TCP is commonly evaluated using performance metrics such as the Average 

Percentage of Faults Detected (APFD) and execution time. A higher APFD score indicates quicker 

fault detection, which contributes to a more efficient testing process [7]. Researchers have also 

explored clustering techniques to optimize TCP by grouping K-Means with similar characteristics. 

This clustering enables more systematic prioritization, ensuring that test cases with a higher 

likelihood of detecting faults are executed first. 

Clustering techniques are essential for improving the APFD rate by organizing K-Means based on 

critical factors: number of faults detected, fault severity and execution time. Studies have shown that 

clustering algorithms can effectively create distinct groups of K-Means with shared attributes. These 

organized clusters form the foundation for prioritization, ensuring that K-Means with a higher 

probability of fault detection are tested earlier [8]. Despite the success of clustering-based approaches 

in enhancing K-Means prioritization, challenges persist, particularly in developing more robust 

frameworks and improving the handling of K-Means attributes. Addressing these challenges presents 

an opportunity for further advancements and refinements in clustering-driven TCP models. 

 

2. Literature Review 

A thorough review of existing research highlights significant contributions and developments in the 

field of test case prioritization (TCP). The foundational work of Leung and White (1989) [1] laid the 

groundwork for regression testing, stressing the importance of prioritizing K-Means to enhance 

efficiency and fault detection. Building on this, Rothermel et al. (1999) [9] further explored various 

TCP strategies, showing how the execution order influences fault detection rates and helps reduce 

costs. 

Following these early contributions, subsequent research delved into different approaches to TCP. 

Leon and Podgurski (2003) [10] compared coverage-based and distribution-based strategies, 

analyzing their strengths and weaknesses, particularly when applied to large test suites. Yoo and 

Harman (2012) [11] highlighted scalability as a significant challenge and proposed optimization 

techniques such as clustering and fuzzy logic to address this issue. Ahmed and Akbar (2018) [12] 

introduced a fuzzy logic-based TCP framework to manage uncertainties in prioritization, offering 

improved efficiency, though it lacked mechanisms to handle redundancy. Chauhan and Bhatnagar 

(2019) [13] combined fuzzy logic with genetic algorithms to optimize TCP, but their approach did 

not include clustering techniques. Similarly, Kaur and Singhal (2020) [14] employed fuzzy logic to 

assign importance to prioritization factors, though they did not investigate the potential benefits of 

clustering for improved fault detection. 

Other studies, such as those by Sharma and Saini (2017) [15] and Yadav and Raghuwanshi (2019) 

[16], demonstrated the value of fuzzy logic in TCP but noted the need for clustering techniques to 

better manage large test suites. Meanwhile, machine learning (ML) and deep learning (DL) have 

introduced innovative approaches to K-Means prioritization. Lachmann et al. (2016) [17] applied 

Random Forests to predict the importance of K-Means, while Davis and Lee (2019) [18] used DL 

models to enhance prioritization accuracy, despite facing computational challenges. Pan et al. (2022) 
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[19] identified scalability and explainability as primary concerns in ML-based TCP approaches, and 

Swain et al. (2022) [20] integrated metaheuristics with ML to improve prioritization outcomes. 

The field of K-Means Prioritization (TCP) has made substantial progress, but there are still numerous 

areas for improvement. This study provides a comprehensive review of the literature to analyze 

significant contributions and emerging trends in TCP. Despite advancements, existing TCP 

techniques continue to face challenges, particularly in managing redundancy and improving 

execution efficiency [21]. To address these issues, this research proposes a novel framework that 

integrates clustering techniques with fuzzy logic. By grouping K-Means with similar attributes, 

clustering can improve execution efficiency, while fuzzy logic helps manage prioritization 

uncertainties. The proposed framework aims to optimize fault detection and enhance TCP strategies 

for both small and large-scale test scenarios. A comparative evaluation demonstrates the effectiveness 

of the framework in improving prioritization and overall software testing efficiency. 

 

3. Proposed Framework 

The proposed framework enhances regression testing by combining Fuzzy Logic, Machine Learning 

(ML), Deep Learning (DL), and K-Means Clustering to optimize test case prioritization. Its main goal 

is to streamline fault detection while ensuring efficient test execution. Designed to be versatile, the 

framework is applicable to both small-scale and large-scale test suites, making it relevant across 

various domains [22][23].  

K-Means prioritization is based on three key factors: Number of Faults Detected (NFD), Fault 

Severity (FS), and Execution Time (ET). The NFD ensures that K-Means likely to detect defects are 

given higher priority for execution. FS focuses on identifying and addressing critical faults that could 

significantly affect the software's functionality. ET considers the time needed to execute the tests, 

balancing the effectiveness of fault detection with efficiency [24][25][26]. These factors serve as 

inputs to the Fuzzy Logic Controller (FLC), which provides a structured approach to prioritization. 

The proposed framework is depicted below: 

 

Figure 1: Proposed Framework 

Fuzzy Logic handles the uncertainties in K-Means prioritization by classifying NFD, FS, and ET into 

three categories: low, medium, and high. The FLC processes these inputs using 15 fuzzy control rules. 
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For example, a rule might indicate that if a K-Means test has a high NFD, high FS, and low ET, it 

should be given high priority. These rules generate priority levels via fuzzy inference, which are then 

converted into numerical values through defuzzification. This ensures that K-Means are ranked 

systematically based on their importance [27]. 

Once priority scores are assigned, K-Means are grouped into high, medium, and low-priority clusters 

using K-Means clustering. This organization ensures that the most critical tests are executed first, 

optimizing early fault detection. 

To further refine the fuzzy logic-based prioritization, Machine Learning models, such as Random 

Forests and Decision Trees, are incorporated. These models analyze historical test execution data and 

learn patterns in K-Means prioritization. Over time, the ML algorithms improve the prioritization 

process by identifying relationships among NFD, FS, and ET. 

For more complex test scenarios, Deep Learning models, particularly Convolutional Neural Networks 

(CNNs), are employed to capture complex patterns in the data. CNNs enhance prioritization accuracy 

by uncovering deeper relationships between K-Means attributes, thereby improving fault detection 

rates. 

Ultimately, the proposed framework integrates fuzzy logic, K-Means clustering, machine learning, 

and deep learning to significantly improve K-Means prioritization, resulting in more effective fault 

detection across diverse testing scenarios. The results reveal a significant enhancement in fault 

detection rates, emphasizing the framework’s capacity to identify defects early in the testing process. 

This early detection helps reduce both the time and cost typically associated with regression testing. 

The framework's performance is evaluated using two main metrics: Fault Detection Rate (FDR), 

which gauges the framework's ability to prioritize K-Means that detect defects early and effectively, 

and Execution Time (ET), which measures how efficiently the models handle different project sizes, 

ensuring high-priority K-Means are executed within available resource constraints. 

To assess scalability and flexibility, the framework is tested on datasets of varying sizes. The 

comprehensive evaluation confirms the framework’s effectiveness in prioritizing and clustering K-

Means across diverse test suites. Both Decision Tree and Random Forest with K-Means clustering 

lead to improvements in fault detection rates by efficiently identifying critical K-Means. However, 

CNN with K-Means clustering outperforms these methods, demonstrating superior fault detection 

capabilities. 

The results indicate a significant increase in fault detection efficiency, underscoring the framework’s 

effectiveness in identifying issues early in the testing phase. This early detection reduces both the 

time and costs typically involved in regression testing. 

 

4. Experiments & Results 

Experiments carried out on datasets of varying sizes reveal the effectiveness of test case prioritization 

when applying Random Forest, Decision Tree, and CNN in conjunction with clustering techniques. 

Key evaluation metrics such as fault detection rate (FDR) and execution time (ET) were used to assess 

each method's performance. On smaller datasets, all models performed comparably, with CNN 

combined with K-Means slightly outperforming others in FDR, while the Decision Tree approach 

executed fastest due to its simplicity. As dataset size increased, distinctions became clearer—CNN + 

K-Means consistently achieved the highest FDR but incurred greater computational costs. Random 

Forest paired with K-Means offered a practical balance, maintaining solid detection accuracy while 

keeping execution time reasonable. Though Decision Tree with K-Means remained the most time-

efficient option, it showed marginally lower fault detection performance across medium and large 

datasets. Overall, the choice of method involves a trade-off between accuracy and efficiency, 

especially as data complexity scales. 

This research evaluates the effectiveness of test case prioritization and clustering strategies by 

applying them to four datasets of varying sizes and complexities. The first dataset, containing only 8 

test cases, serves as a baseline, allowing a clear observation of the framework’s core functionality in 
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prioritizing and clustering within a minimal test suite. The second dataset, consisting of 100 test cases, 

introduces a moderate level of complexity, helping to analyze the framework’s ability to improve 

fault detection rates and enhance prioritization accuracy as data volume increases. 

As the complexity scales further, the third dataset with 5,000 test cases is used to assess how well the 

framework performs in a medium-sized environment, focusing on its scalability and consistency. The 

fourth dataset, encompassing 10,000, 15,000, and 19,200 test cases, simulates a real-world, large-

scale scenario. This setup tests the framework’s capability to efficiently manage extensive test suites 

while maintaining high fault detection effectiveness. For each dataset, a detailed comparison is 

conducted between prioritized and non-prioritized test cases using the Average Percentage of Faults 

Detected (APFD) metric. The analysis emphasizes the framework’s adaptability, performance, and 

potential for practical application in diverse testing environments. 

 

Comparison of Results with Existing Studies 

Table 1 presents a comparative analysis of the performance of the Proposed Framework (2025) 

alongside earlier research efforts, evaluating different techniques across varying test case volumes. 

Within the Proposed Framework, integrating K-Means clustering with machine learning models 

results in a noticeable improvement in fault detection rate (FDR) as the dataset size increases. 

Notably, the CNN combined with K-Means achieves the highest FDR of 99.7% for 19,200 test cases, 

albeit with a longer execution time of 78 seconds. In contrast, the Random Forest + K-Means and 

Decision Tree + K-Means combinations demonstrate slightly lower FDRs but are more time-efficient. 

When compared to previous studies, such as the Machine Learning-Based TCP from Study [28] 

(2023), which recorded a 98.7% FDR with a 50-second execution time, and the APFD Optimization 

from Study [29] (2022), with a 97.2% FDR and 35 seconds ET, the Proposed Framework shows 

competitive accuracy with varying trade-offs in processing time. 

 

 

 

 

 

 

 

Table 1: Comparative Analysis: Large Scale Datasets with Existing Studies 

Study Technique 
Number of 

Test Cases 

Fault 

Detection 

Rate (FDR) 

Execution 

Time (ET) 

Proposed 

Framework 

(2025) 

Random Forest + K-

Means 
10,000 97.4% 32s 

 
Decision Tree + K-

Means 
10,000 97% 15.05s 

 CNN + K-Means 10,000 98.9% 61s 

 Random Forest + K- 15,000 98.4% 35s 
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Study Technique 
Number of 

Test Cases 

Fault 

Detection 

Rate (FDR) 

Execution 

Time (ET) 

Means 

 
Decision Tree + K-

Means 
15,000 97.12% 21s 

 CNN + K-Means 15,000 99% 69s 

 
Random Forest + K-

Means 
19,200 99.0% 37s 

 
Decision Tree + K-

Means 
19,200 97.8% 21s 

 CNN + K-Means 19,200 99.7% 78s 

Study [30] 

(2019) 
Coverage-Based TCP 10,000 96.5% 30s 

Study [29] 

(2022) 
APFD Optimization 15,000 97.2% 35s 

Study [28] 

(2023) 

Machine Learning-

Based TCP 
12,000 98.7% 50s 

 

 

Figure 2(a) and (b) illustrate the relationship between fault detection rate (FDR) and execution time 

(ET), showing a clear trade-off between the two. CNN-based methods yield the highest FDR 

percentages, while Decision Tree and Random Forest approaches strike a more balanced compromise 

between detection effectiveness and computational efficiency. 
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Figure 2a): Comparison of FDR with Existing Studies (Large Scale Datasets) 

 

 

Figure 2b): Comparison of ET with Existing Studies (Large Scale Datasets) 

In the Proposed Framework, the CNN combined with K-Means stands out by delivering the highest 

fault detection rate (FDR) of 99.7%, surpassing all previously documented methods. In terms of 

execution efficiency, the Decision Tree + K-Means approach proves to be the fastest, completing 

execution in just 21 seconds—significantly quicker than other techniques, particularly those based on 

CNN. Among the top-performing alternatives, both Random Forest + K-Means and Decision Tree + 

K-Means from the Proposed Framework demonstrate a strong balance between accuracy and speed. 

Additionally, the Machine Learning-Based TCP approach introduced in 2023 also offers competitive 

FDR, although it requires more time for execution compared to the newer methods. 
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5. Conclusion 

The proposed framework utilizes a combination of Fuzzy Logic, Machine Learning (ML), Deep 

Learning (DL), and Clustering techniques to optimize regression testing by improving test case 

prioritization. Its primary goal is to enhance fault detection rates while efficiently managing test 

execution, making it suitable for both small and large test suites. The framework identifies crucial 

factors influencing test case prioritization, such as NFD, FS, and ET, ensuring that test cases with 

higher defect detection potential and critical severity are prioritized, while balancing execution 

efficiency. 

The Fuzzy Logic Controller (FLC) processes these factors using predefined membership functions 

and fuzzy control rules to classify test cases into low, medium, and high-priority categories. The fuzzy 

system dynamically adjusts prioritization based on uncertainties and variations in the testing process. 

Once fuzzy inference is completed, defuzzification is applied to convert priority levels into numerical 

scores, which serve as inputs for clustering. 

To refine prioritization accuracy, Machine Learning models like Decision Trees (DT) and Random 

Forest (RF) predict test case priorities based on historical test data. Convolutional Neural Networks 

(CNNs) are used to analyze complex patterns within test case attributes, further enhancing 

prioritization efficiency. Once priorities are established, K-Means clustering is applied to group test 

cases into high, medium, and low-priority clusters, ensuring an optimized execution order. 

The framework's effectiveness is validated using datasets of varying sizes, including small-scale test 

suites (e.g., the triangle problem), a healthcare dataset with 87 test cases, a medium-sized 

manufacturing dataset with 5,000 test cases, and a large-scale banking dataset with 19,200 test cases. 

Despite coming from different domains, domain-specific considerations have not been incorporated 

yet. Experimental results show a significant improvement in the Average Percentage of Faults 

Detected (APFD), with prioritized test cases consistently outperforming non-prioritized ones. 

This research demonstrates that the integration of clustering techniques with ML and DL models 

enhances both fault detection rates and execution efficiency, making the framework highly scalable 

and applicable to real-world software testing scenarios. The results highlight the superior performance 

of CNN with K-Means clustering, which outperforms Decision Trees and Random Forests in terms 

of fault detection. 
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