
1 | P a g e

International Journal of Sustainable Development

Through AI, ML and IoT
Volume 4 | Issue1 | 2025

https://ijsdai.com/index.php/IJSDAI/index

ISSN (Online): 2584-0827

Test Case Prioritization Through Clustering: A Data-Driven

Approach

 Sheetal Sharma1, Swati V. Chande2 & Dr N.K. Joshi3

 1 Rajasthan Technical University, Kota 324010, India

 2 International School of Informatics & Management, Jaipur 302020, India

 3 Modi Institute of Management & Technology, KOTA-324009 Rajasthan India
 Corresponding author: sheetaljoshi2e@gmail.com

ARTICLE INFO ABSTRACT

Received: 1 June 2025

Revised: 17 June 2025

Accepted: 29 July 2025

In software development, maintaining software quality and reliability

through thorough testing is vital. However, as software systems become

increasingly complex, managing large volumes of test cases presents

significant challenges [1]. To tackle this problem, effective test case

prioritization is necessary to ensure that the most critical tests are

executed first [2]. This paper introduces an innovative approach to test

case prioritization by combining clustering techniques, specifically K-

means, with machine learning algorithms. We explore how K-means

clustering can group similar test cases to improve prioritization

efficiency [3][4]. Furthermore, we examine the performance of several

machine learning models, including Decision Trees (DT), Random

Forests (RF), and Neural Networks (NN), comparing their results against

traditional methods. The study evaluates these approaches using diverse

datasets and metrics such as the number of executed test cases, fault

detection rate, and execution time [5]. Experimental findings

demonstrate that integrating K-means clustering with machine learning

techniques can enhance prioritization by reducing test execution efforts

while preserving or even boosting fault detection capabilities. We also

highlight the limitations of the proposed method and suggest future

research opportunities aimed at further optimizing test case prioritization

through advanced machine learning strategies. Overall, this framework

offers important contributions toward developing more effective and

reliable software testing processes.

.

https://ijsdai.com/index.php/IJSDAI/index
https://ijsdai.com/index.php/IJSDAI/index
https://ijsdai.com/index.php/IJSDAI/index

2 | P a g e

1. Introduction

The growing complexity of software systems demands comprehensive testing to guarantee their

reliability and performance. Regression testing, which ensures that recent changes such as bug fixes

and new features do not disrupt existing functionalities, is a vital aspect of this process [1]. To

improve the efficiency of regression testing, various techniques are employed, including K-Means

selection, minimization, and prioritization. One such technique, K-Means Prioritization (TCP), ranks

test cases based on factors like fault detection, fault severity, execution time, and code coverage [6].

This approach helps identify critical faults earlier, enhancing testing efficiency and minimizing

potential risks.

The effectiveness of TCP is commonly evaluated using performance metrics such as the Average

Percentage of Faults Detected (APFD) and execution time. A higher APFD score indicates quicker

fault detection, which contributes to a more efficient testing process [7]. Researchers have also

explored clustering techniques to optimize TCP by grouping K-Means with similar characteristics.

This clustering enables more systematic prioritization, ensuring that test cases with a higher

likelihood of detecting faults are executed first.

Clustering techniques are essential for improving the APFD rate by organizing K-Means based on

critical factors: number of faults detected, fault severity and execution time. Studies have shown that

clustering algorithms can effectively create distinct groups of K-Means with shared attributes. These

organized clusters form the foundation for prioritization, ensuring that K-Means with a higher

probability of fault detection are tested earlier [8]. Despite the success of clustering-based approaches

in enhancing K-Means prioritization, challenges persist, particularly in developing more robust

frameworks and improving the handling of K-Means attributes. Addressing these challenges presents

an opportunity for further advancements and refinements in clustering-driven TCP models.

2. Literature Review

A thorough review of existing research highlights significant contributions and developments in the

field of test case prioritization (TCP). The foundational work of Leung and White (1989) [1] laid the

groundwork for regression testing, stressing the importance of prioritizing K-Means to enhance

efficiency and fault detection. Building on this, Rothermel et al. (1999) [9] further explored various

TCP strategies, showing how the execution order influences fault detection rates and helps reduce

costs.

Following these early contributions, subsequent research delved into different approaches to TCP.

Leon and Podgurski (2003) [10] compared coverage-based and distribution-based strategies,

analyzing their strengths and weaknesses, particularly when applied to large test suites. Yoo and

Harman (2012) [11] highlighted scalability as a significant challenge and proposed optimization

techniques such as clustering and fuzzy logic to address this issue. Ahmed and Akbar (2018) [12]

introduced a fuzzy logic-based TCP framework to manage uncertainties in prioritization, offering

improved efficiency, though it lacked mechanisms to handle redundancy. Chauhan and Bhatnagar

(2019) [13] combined fuzzy logic with genetic algorithms to optimize TCP, but their approach did

not include clustering techniques. Similarly, Kaur and Singhal (2020) [14] employed fuzzy logic to

assign importance to prioritization factors, though they did not investigate the potential benefits of

clustering for improved fault detection.

Other studies, such as those by Sharma and Saini (2017) [15] and Yadav and Raghuwanshi (2019)

[16], demonstrated the value of fuzzy logic in TCP but noted the need for clustering techniques to

better manage large test suites. Meanwhile, machine learning (ML) and deep learning (DL) have

introduced innovative approaches to K-Means prioritization. Lachmann et al. (2016) [17] applied

Random Forests to predict the importance of K-Means, while Davis and Lee (2019) [18] used DL

models to enhance prioritization accuracy, despite facing computational challenges. Pan et al. (2022)

3 | P a g e

[19] identified scalability and explainability as primary concerns in ML-based TCP approaches, and

Swain et al. (2022) [20] integrated metaheuristics with ML to improve prioritization outcomes.

The field of K-Means Prioritization (TCP) has made substantial progress, but there are still numerous

areas for improvement. This study provides a comprehensive review of the literature to analyze

significant contributions and emerging trends in TCP. Despite advancements, existing TCP

techniques continue to face challenges, particularly in managing redundancy and improving

execution efficiency [21]. To address these issues, this research proposes a novel framework that

integrates clustering techniques with fuzzy logic. By grouping K-Means with similar attributes,

clustering can improve execution efficiency, while fuzzy logic helps manage prioritization

uncertainties. The proposed framework aims to optimize fault detection and enhance TCP strategies

for both small and large-scale test scenarios. A comparative evaluation demonstrates the effectiveness

of the framework in improving prioritization and overall software testing efficiency.

3. Proposed Framework

The proposed framework enhances regression testing by combining Fuzzy Logic, Machine Learning

(ML), Deep Learning (DL), and K-Means Clustering to optimize test case prioritization. Its main goal

is to streamline fault detection while ensuring efficient test execution. Designed to be versatile, the

framework is applicable to both small-scale and large-scale test suites, making it relevant across

various domains [22][23].

K-Means prioritization is based on three key factors: Number of Faults Detected (NFD), Fault

Severity (FS), and Execution Time (ET). The NFD ensures that K-Means likely to detect defects are

given higher priority for execution. FS focuses on identifying and addressing critical faults that could

significantly affect the software's functionality. ET considers the time needed to execute the tests,

balancing the effectiveness of fault detection with efficiency [24][25][26]. These factors serve as

inputs to the Fuzzy Logic Controller (FLC), which provides a structured approach to prioritization.

The proposed framework is depicted below:

Figure 1: Proposed Framework

Fuzzy Logic handles the uncertainties in K-Means prioritization by classifying NFD, FS, and ET into

three categories: low, medium, and high. The FLC processes these inputs using 15 fuzzy control rules.

4 | P a g e

For example, a rule might indicate that if a K-Means test has a high NFD, high FS, and low ET, it

should be given high priority. These rules generate priority levels via fuzzy inference, which are then

converted into numerical values through defuzzification. This ensures that K-Means are ranked

systematically based on their importance [27].

Once priority scores are assigned, K-Means are grouped into high, medium, and low-priority clusters

using K-Means clustering. This organization ensures that the most critical tests are executed first,

optimizing early fault detection.

To further refine the fuzzy logic-based prioritization, Machine Learning models, such as Random

Forests and Decision Trees, are incorporated. These models analyze historical test execution data and

learn patterns in K-Means prioritization. Over time, the ML algorithms improve the prioritization

process by identifying relationships among NFD, FS, and ET.

For more complex test scenarios, Deep Learning models, particularly Convolutional Neural Networks

(CNNs), are employed to capture complex patterns in the data. CNNs enhance prioritization accuracy

by uncovering deeper relationships between K-Means attributes, thereby improving fault detection

rates.

Ultimately, the proposed framework integrates fuzzy logic, K-Means clustering, machine learning,

and deep learning to significantly improve K-Means prioritization, resulting in more effective fault

detection across diverse testing scenarios. The results reveal a significant enhancement in fault

detection rates, emphasizing the framework’s capacity to identify defects early in the testing process.

This early detection helps reduce both the time and cost typically associated with regression testing.

The framework's performance is evaluated using two main metrics: Fault Detection Rate (FDR),

which gauges the framework's ability to prioritize K-Means that detect defects early and effectively,

and Execution Time (ET), which measures how efficiently the models handle different project sizes,

ensuring high-priority K-Means are executed within available resource constraints.

To assess scalability and flexibility, the framework is tested on datasets of varying sizes. The

comprehensive evaluation confirms the framework’s effectiveness in prioritizing and clustering K-

Means across diverse test suites. Both Decision Tree and Random Forest with K-Means clustering

lead to improvements in fault detection rates by efficiently identifying critical K-Means. However,

CNN with K-Means clustering outperforms these methods, demonstrating superior fault detection

capabilities.

The results indicate a significant increase in fault detection efficiency, underscoring the framework’s

effectiveness in identifying issues early in the testing phase. This early detection reduces both the

time and costs typically involved in regression testing.

4. Experiments & Results

Experiments carried out on datasets of varying sizes reveal the effectiveness of test case prioritization

when applying Random Forest, Decision Tree, and CNN in conjunction with clustering techniques.

Key evaluation metrics such as fault detection rate (FDR) and execution time (ET) were used to assess

each method's performance. On smaller datasets, all models performed comparably, with CNN

combined with K-Means slightly outperforming others in FDR, while the Decision Tree approach

executed fastest due to its simplicity. As dataset size increased, distinctions became clearer—CNN +

K-Means consistently achieved the highest FDR but incurred greater computational costs. Random

Forest paired with K-Means offered a practical balance, maintaining solid detection accuracy while

keeping execution time reasonable. Though Decision Tree with K-Means remained the most time-

efficient option, it showed marginally lower fault detection performance across medium and large

datasets. Overall, the choice of method involves a trade-off between accuracy and efficiency,

especially as data complexity scales.

This research evaluates the effectiveness of test case prioritization and clustering strategies by

applying them to four datasets of varying sizes and complexities. The first dataset, containing only 8

test cases, serves as a baseline, allowing a clear observation of the framework’s core functionality in

5 | P a g e

prioritizing and clustering within a minimal test suite. The second dataset, consisting of 100 test cases,

introduces a moderate level of complexity, helping to analyze the framework’s ability to improve

fault detection rates and enhance prioritization accuracy as data volume increases.

As the complexity scales further, the third dataset with 5,000 test cases is used to assess how well the

framework performs in a medium-sized environment, focusing on its scalability and consistency. The

fourth dataset, encompassing 10,000, 15,000, and 19,200 test cases, simulates a real-world, large-

scale scenario. This setup tests the framework’s capability to efficiently manage extensive test suites

while maintaining high fault detection effectiveness. For each dataset, a detailed comparison is

conducted between prioritized and non-prioritized test cases using the Average Percentage of Faults

Detected (APFD) metric. The analysis emphasizes the framework’s adaptability, performance, and

potential for practical application in diverse testing environments.

Comparison of Results with Existing Studies

Table 1 presents a comparative analysis of the performance of the Proposed Framework (2025)

alongside earlier research efforts, evaluating different techniques across varying test case volumes.

Within the Proposed Framework, integrating K-Means clustering with machine learning models

results in a noticeable improvement in fault detection rate (FDR) as the dataset size increases.

Notably, the CNN combined with K-Means achieves the highest FDR of 99.7% for 19,200 test cases,

albeit with a longer execution time of 78 seconds. In contrast, the Random Forest + K-Means and

Decision Tree + K-Means combinations demonstrate slightly lower FDRs but are more time-efficient.

When compared to previous studies, such as the Machine Learning-Based TCP from Study [28]

(2023), which recorded a 98.7% FDR with a 50-second execution time, and the APFD Optimization

from Study [29] (2022), with a 97.2% FDR and 35 seconds ET, the Proposed Framework shows

competitive accuracy with varying trade-offs in processing time.

Table 1: Comparative Analysis: Large Scale Datasets with Existing Studies

Study Technique
Number of

Test Cases

Fault

Detection

Rate (FDR)

Execution

Time (ET)

Proposed

Framework

(2025)

Random Forest + K-

Means
10,000 97.4% 32s

Decision Tree + K-

Means
10,000 97% 15.05s

 CNN + K-Means 10,000 98.9% 61s

 Random Forest + K- 15,000 98.4% 35s

6 | P a g e

Study Technique
Number of

Test Cases

Fault

Detection

Rate (FDR)

Execution

Time (ET)

Means

Decision Tree + K-

Means
15,000 97.12% 21s

 CNN + K-Means 15,000 99% 69s

Random Forest + K-

Means
19,200 99.0% 37s

Decision Tree + K-

Means
19,200 97.8% 21s

 CNN + K-Means 19,200 99.7% 78s

Study [30]

(2019)
Coverage-Based TCP 10,000 96.5% 30s

Study [29]

(2022)
APFD Optimization 15,000 97.2% 35s

Study [28]

(2023)

Machine Learning-

Based TCP
12,000 98.7% 50s

Figure 2(a) and (b) illustrate the relationship between fault detection rate (FDR) and execution time

(ET), showing a clear trade-off between the two. CNN-based methods yield the highest FDR

percentages, while Decision Tree and Random Forest approaches strike a more balanced compromise

between detection effectiveness and computational efficiency.

7 | P a g e

Figure 2a): Comparison of FDR with Existing Studies (Large Scale Datasets)

Figure 2b): Comparison of ET with Existing Studies (Large Scale Datasets)

In the Proposed Framework, the CNN combined with K-Means stands out by delivering the highest

fault detection rate (FDR) of 99.7%, surpassing all previously documented methods. In terms of

execution efficiency, the Decision Tree + K-Means approach proves to be the fastest, completing

execution in just 21 seconds—significantly quicker than other techniques, particularly those based on

CNN. Among the top-performing alternatives, both Random Forest + K-Means and Decision Tree +

K-Means from the Proposed Framework demonstrate a strong balance between accuracy and speed.

Additionally, the Machine Learning-Based TCP approach introduced in 2023 also offers competitive

FDR, although it requires more time for execution compared to the newer methods.

8 | P a g e

5. Conclusion

The proposed framework utilizes a combination of Fuzzy Logic, Machine Learning (ML), Deep

Learning (DL), and Clustering techniques to optimize regression testing by improving test case

prioritization. Its primary goal is to enhance fault detection rates while efficiently managing test

execution, making it suitable for both small and large test suites. The framework identifies crucial

factors influencing test case prioritization, such as NFD, FS, and ET, ensuring that test cases with

higher defect detection potential and critical severity are prioritized, while balancing execution

efficiency.

The Fuzzy Logic Controller (FLC) processes these factors using predefined membership functions

and fuzzy control rules to classify test cases into low, medium, and high-priority categories. The fuzzy

system dynamically adjusts prioritization based on uncertainties and variations in the testing process.

Once fuzzy inference is completed, defuzzification is applied to convert priority levels into numerical

scores, which serve as inputs for clustering.

To refine prioritization accuracy, Machine Learning models like Decision Trees (DT) and Random

Forest (RF) predict test case priorities based on historical test data. Convolutional Neural Networks

(CNNs) are used to analyze complex patterns within test case attributes, further enhancing

prioritization efficiency. Once priorities are established, K-Means clustering is applied to group test

cases into high, medium, and low-priority clusters, ensuring an optimized execution order.

The framework's effectiveness is validated using datasets of varying sizes, including small-scale test

suites (e.g., the triangle problem), a healthcare dataset with 87 test cases, a medium-sized

manufacturing dataset with 5,000 test cases, and a large-scale banking dataset with 19,200 test cases.

Despite coming from different domains, domain-specific considerations have not been incorporated

yet. Experimental results show a significant improvement in the Average Percentage of Faults

Detected (APFD), with prioritized test cases consistently outperforming non-prioritized ones.

This research demonstrates that the integration of clustering techniques with ML and DL models

enhances both fault detection rates and execution efficiency, making the framework highly scalable

and applicable to real-world software testing scenarios. The results highlight the superior performance

of CNN with K-Means clustering, which outperforms Decision Trees and Random Forests in terms

of fault detection.

References:

[1] H. K. Leung and L. White, "Insights into regression testing (software testing)," in Proc. Conf.

Softw. Maintenance, 1989, pp. 60–69.

[2] S. Kumar and S. Singh, "Test case prioritization: Various techniques–A review," Int. J. Sci.

Eng. Res., vol. 4, no. 4, pp. 1106–1109, 2013.

[3] R. Lachmann et al., "System-level test case prioritization using machine learning," in 2016

15th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 201-

207, 2016.

[4] L. Davis and P. Lee, "Deep learning for automated test case prioritization," in Proc. Int.

Conf. on Software Engineering (ICSE), pp. 150–158, 2019.

[5] R. Pan et al., "Test case selection and prioritization using machine learning: A systematic

literature review," Empirical Software Engineering, vol. 27, no. 2, 2022.

[6] A. Verma and R. Kumar, "Test case prioritization using a fuzzy logic approach based on

multiple factors," Journal of Software: Evolution and Process, vol. 30, no. 2, e1908, 2018.

[7] V. Gupta, P. C. Jha, and K. K. Biswas, "Test case prioritization using fault severity," in

International Journal of Computer Science and Technology (IJCST), vol. 1, no. 1, pp. 12–18,

Mar. 2010. [Online].

9 | P a g e

[8] A. Verma, R. Bajaj, and I. K. Luthra, “A Novel Density-Based K-Means Clustering for Test

Case Prioritization in Regression Testing,” International Journal of Computer Science and

Technology, vol. 7, no. 1, pp. 114–116, Mar. 2016.

[9] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, "Test case prioritization: An empirical

study," in Proc. IEEE Int. Conf. Softw., Aug. 1999.

[10] D. Leon and A. Podgurski, "A comparison of coverage-based and distribution-based

techniques for filtering and prioritizing test cases," in Proc. 14th Int. Symp. Softw. Reliab. Eng.

(ISSRE), Nov. 2003, pp. 442–453.

[11] S. Yoo and M. Harman, "Regression testing minimization, selection and prioritization: A

survey," Softw. Test. Verif. Reliab., vol. 22, no. 2, pp. 67–120, 2012.

[12] M. Ahmed and M. Akbar, "A fuzzy logic-based approach for test case prioritization using

fault severity and execution time," Int. J. Advanced Computer Science and Applications, vol. 9,

no. 4, pp. 112–120, 2018.

[13] N. Chauhan and N. Bhatnagar, "Test case prioritization using a hybrid approach combining

fuzzy logic and genetic algorithms," Journal of Systems and Software, vol. 158, p. 110425, 2019.

[14] R. Kaur and A. Singhal, "Test case prioritization using fuzzy logic-based criteria

weighting," Int. J. Software Engineering and Computer Systems, vol. 6, no. 1, pp. 45–56, 2020.

[15] S. Sharma and R. Saini, "Enhancing fault detection efficiency using fuzzy logic in test case

prioritization," Journal of Computer Science and Technology, vol. 33, no. 4, pp. 692–708, 2017.

[16] S. Yadav and A. Raghuwanshi, "Application of fuzzy logic for efficient test case

prioritization," Int. J. Recent Technology and Engineering, vol. 8, no. 4, pp. 186–191, 2019.

[17] R. Lachmann et al., "System-level test case prioritization using machine learning," in 2016

15th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 201-

207, 2016.

[18] L. Davis and P. Lee, "Deep learning for automated test case prioritization," in Proc. Int.

Conf. on Software Engineering (ICSE), pp. 150–158, 2019.

[19] R. Pan et al., "Test case selection and prioritization using machine learning: A systematic

literature review," Empirical Software Engineering, vol. 27, no. 2, 2022.

[20] A. Swain et al., "Automated test case prioritization using machine learning," in

International Conference on Metaheuristics in Software Engineering and its Application, Cham:

Springer International Publishing, 2022.

[21] S. Sharma and J. Choudhary, “A K-Means Clustering Approach to Test Case

Minimization,” Journal of Information Systems Engineering & Management, vol. 10, no. 4, pp.

370–380, Dec. 2024.

[22] A. Verma and R. Kumar, "Test case prioritization using a fuzzy logic approach based on

multiple factors," Journal of Software: Evolution and Process, vol. 30, no. 2, e1908, 2018.

[23] A. C. Bezerra, T. C. de Souza, and M. A. F. Silva, "Test case prioritization using machine

learning techniques," in Proceedings of the 2019 IEEE International Conference on Information

Communication and Computing Systems (ICICCS), pp. 120–125, 2019.

[24] C. Hettiarachchi, H. Do, and B. Choi, "Effective regression testing using requirements and

risks," in 2014 Eighth Int. Conf. on Software Security and Reliability (SERE), San Francisco,

CA, USA, pp. 157–166, June 2014, doi: 10.1109/SERE.2014.33.

[25] V. Gupta, P. C. Jha, and K. K. Biswas, "Test case prioritization using fault severity," in

International Journal of Computer Science and Technology (IJCST), vol. 1, no. 1, pp. 12–18,

Mar. 2010. [Online].

[26] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche, "Coverage-based test case

prioritisation: An industrial case study," in Proc. IEEE 6th Int. Conf. Softw. Test. Verif. Valid.

(ICST), Mar. 2013, pp. 302–311.

[27] R. Arumugam and N. Kumaravel, "Fuzzy logic approach for test case prioritization using

multiple factors," Journal of Software Engineering and Applications, vol. 9, no. 9, pp. 435–445,

2016.

10 | P a g e

[28] Sharif, A., Marijan, D., & Liaaen, M. (2023). "DeepOrder: Deep Learning for Test Case

Prioritization in Continuous Integration Testing." arXiv preprint arXiv:2301.07443.

[29] Patel, R., & Zhao, L. (2022). "Optimizing APFD for Enhanced Test Case Prioritization in

Large-Scale Systems." IEEE Access, vol. 10, pp. 24750-24765. doi:

10.1109/ACCESS.2022.3145678.

[30] Li, P., Chen, X., & Wang, Y. (2019). "Coverage-Based Test Case Prioritization for

Regression Testing." IEEE Transactions on Software Engineering, vol. 45, no. 2, pp. 150-165.

doi: 10.1109/TSE.2019.2894517.

